Tag Archives: Florida

Surfside Ecotones

Shifting from a vision of blissed-out honeybees buzzing around a flowering birch tree in city gardens to the history of those buildings’ individual bricks, Campbell McGrath conjured a distinctly modern melancholy that imagines New York, reduced to an “archipelago of memory.” Taking poetic license to link buildings of man-made bricks once “barged down the Hudson,” from a hinterland of clay pits, quarries, and factories, to the future history of their disintegratation into the Atlantic, he asks we imagine their eventual return to silt: “It’s all going under, the entire Eastern Seaboard,” the Miami-based poet almost exuberantly prophesied, urging that we welcome the impending ecotonal intersection between land and sea that rising temperatures have wrought. As the pollen born on anthers from blossoms of cherry trees to hexagonal cells of their hives, the transience of buildings is not surprising from a poet who lives in a state where sea-level rise is four times the global rate. The atmospheric stresses of coastal condominiums near Miami is in the news again, as the catastrophic destruction is not apocalyptic in its own way.

In evoking the impending retreat of New York from its shores, McGrath imbued a sense of place with the stoic inevitability of monumental cataclysm. Global warming, sings the Miami-based poet, is an inevitability we must learn to welcome. Yet it is hard to acknowledge the inevitability of collapse on shorelines’ ever-changing ecotone. And it is hard to dislodge coastal California from the imagined vacation spot whose climate we could keep in aspic as a holiday space preserved in yellow photographs of old family albums. If Florida always seemed to stand in for salubrity and exceptionalism of sunny weather–its winter beaches promising fun and a promised rejuvenation for the vacationers and elderly alike as if the peninsula promised perpetual summer breezes and an abundance of sun–

Fabulous Florida–COOL in Summer! . . . WARM in Winter!

–where coastal waters promised easy access. The mythic geography that encouraged the construction of untold condominiums along the coast now seems a huge miscalculation. For as sand is eroded from those beaches with sea-level rise, we try to come to terms with an ecotonal shoreline that may not be able, with increased coastal flooding, to sustain their increased weight of condominiums’ coastal views. For saltwater permeation of the subsoil and inland ground risks eroding the very structures built to provide access to the sea, in a rush to build towers by the ocean that preceded the increase of saltwater inundation of the “land,” buildings whipped by hurricanes of unprecedented intensity, and storm surges that move ever more inland, the water table of the entire state is being pushed up in ways that will only remind us how much landfill the coast is actually built on.

We may have collectively adopted an attitude of near resignation at climate change and sea-level rise as intangibles by early 2020, after an unremitting sort of denialism of the “fraud” of climate change; McGrath’s poem preceded the terrifying collapse of the Surfside Towers evoked a shifting map of the nation as the Atlantic rose. The disaster grabbed national attention as the collapse of the residential building on the coast near Miami actually collapsed, pancaking in ways that attracted national alarm. And not for no reason. For the whole of the national seaboard seems compelled to move in exactly the same direction McGrath’s poem that sings of the eventuality of climate change. Leaving Washington, DC, the American Capitol secures more solid grounds in Kansas City and leaves the shores of Washington, DC, leaving “flooded tenements” or houseboats that are “moored to bank pillars along Wall Street.” As the Atlantic rises, few “will mourn for Washington,” and the once densely inhabited seaboard is abandoned, the coast reduced, in this dystopic flight of fancy, leaving the nation forced to shift the capitol to western Missouri in a search for more secure grounds.

The sudden collapse of half of the south tower of Champlain Towers in Surfside, FL, may be less apocalyptic in scope than the eastern seaboard. But it is now impossible to speak of offhand: we are agape mourning residents of the collapsed tower, trapped under the concrete rubble after the sudden pancaking of the southern tower. Without presuming to judge or diagnose the actual causes for the tragic sudden collapse of a twelve story condominium along the shore, the shock of the pancaking of floors of an inhabited condominium raises questions on how the many structural questions that surround Champlain Towers were overlooked. We ask in retrospective whether the certification process is adequate for forty year old concrete weight-bearing structures exposed to far more saltiness and saltwater than they were ever planned to encounter, they also raise questions of the increasingly anthropogenic construction of the coast. While the state of Florida long sold itself to the nation as a beach land–a site of people sprawled on towels soaking up the sun–the fluid nature of the coast as an ecotone bridging land and sea in changeable and changing ways suggests nothing less than the collision course between the increasingly fragile edge-land of the coast with the image of beachfront property that assuredly offers its future residents the health of the shoreline and a view of the sea.

The advertisement in a publication ostensibly dedicated to geographic education offered a map of the state as a map of pleasure, pools, white plaster towers, and folks in bathing suits, picnicking, golfing and playing beachball, as the sun gazed beatifically down on the state’s azure shores: the whole peninsula seemed a beach, or in fact was one, boasting room for all on 1,400 miles of mainland coastline.

“Fabulous Florida,” state advertisement in National Geographic (1952)

Although the realty industry and development business have sold the coastal experience of Florida as access to the shore, that increasingly popular prospect on the tranquil sea, the coast is in fact an ecotone–an intersection of land and sea, and increasingly porous one. We must recognize the coast as an increasingly overbuilt environment, and one poorly mapped as a divide between land and sea. The absence of the shore as a clear line should be more than evident not because of sea-level rise, but the density of shoreline skyscrapers and concrete residences crowding a strip between protected interior wetlands and the shore in southern Florida that is mostly built on former wetlands, but presented as a clear divide between land and see. We have encouraged the construction of a complex of coastal settlement as if it lay on solid ground, in concrete towers that are not impervious to weathering from the ocean air that washes over the shore, as we ignore the coastline’s vulnerability from ocean elements. If the porous nature of land and sea are viewed as problems of the ocean–the adverse effects of agricultural runoff or human waste on ocean currents beset by tidal algal blooms from the late 1970’s–due to agricultural runoff–and apparent in inland lakes, the fragility of the built environments we have made on the shore are not fully mapped for the very consumers sold residences promising ocean views, which are often poorly inspected due to developers’ greed. We have failed to map the coast as an ecotone–or acknowledge the increased permeation of the shore with saltwater, both underground and in the increasingly active weather systems that envelope the shore with saline ocean air, as we imagine the shore to be able to be mapped as a straight line, when it is not.

We continue to map “settlement” and “development” in terms of sold shoreslines, as if they were impermeable and not buffeted themselves. We have long mapped Florida by its beaches, and constructing homes for a market that privileged the elusive and desired promise of a beach view. Despite the allure that the state offers as a sort of mecca of beach settlement, meeting a market by offering vicarious live beach webcams in Florida and refusing, in the 2020 pandemic, to close beaches and beach life that promise an engine of economic activity, or imagine red flags by posing danger signs on the beaches.

Risks are similarly reduced or erased in the practice of coastal development for too long. We long recognized the instability of the shoreline communities, and not only from rising sea-level or surging seas. The lure of the beach continues, denying their actual instability, with the lure of otherworldly qualities as “edges” we imagine ourselves to be exhilarated by, if not released from day-to-day constraints, as a destination promising a new prospect on life.

The long distinction of the state by its beaches–its uncertain edges with the ocean–demand to be mapped and acknowledged as less of the clear line between land and sea than not only a permeable boundary, but of a complex geography vulnerable to both above ground flooding and underground saltwater incursion, sustained exposure to salty air, winds of increased velocity, and an increasing instability of its shores that have long been a site attracting increased settlement. Can one view the ocean surrounding the shores not only as a quiescent blue, but as engaged with the redrawing of the line of the shore itself as a divide long seen as a stable edge of land and sea?

From the increased tensions of hurricanes from the warming oceans, to underground saltwater incursion, to a constant beach erosion and remediation, the beaches we map as lines are coastal environment whose challenges engineers who valued the economy and strength of concrete towers did not imagine. The combination of the influx of salty air, the erosion and replacement of beach “sand”, and increased construction of condominium have created an anthropogenic shore that demands to be examined less as a divide between land and sea than a complex ecotone where salt air, eroding sand, karst, and subsoil weaknesses all intersect, in ways that the mitigation strategies privileging seawalls and pumping stations ignore. As importation of sand for Miami’s “beach” continues, have we lost sight of the increasingly ecotonal organization of Florida’s shores?

Sands from Central Florida Arive with U.S. Army Engineers in January, 2020
Matias Ocner/Miami Herald

The point of this post is to ask how we can best map shifts in the increasingly anthropogenic nature of Miami’s shores to come to terms with the tragedy of Champlain Towers, to seek us to remain less quiescent in the face of the apparent rejiggering of coastal conditions as a result of climate change beyond usual metrics of sea-level rise. For the collapse of Champlain Towers provides an occasion for considering how we map these shores, even if the forensic search for the immediate structural weaknesses that allowed the disaster of Champlain Towers to occur.

Miami Beach has the distinction of the the lowest site in a state with the second-lowest mean elevation in the nation, and ground zero of climate change–but the drama of the recent catastrophic implosion of part of Champlain Towers should have become national news as it suggested the possible fragility of regions of building that are no longer clearly defined as on land or sea, but exist in complex ecotones where the codes of concrete and other building materials may well no longer apply–or, forty years ago, were just not planned to encounter. While we have focussed on the collapse of the towers with panic, watching the suddenly ruptured apartments akin to exposed television sets of everyday Americans’ daily lives, the interruption of the sudden collapse of the towers is hard to process but must be situated in the opening of a new landscape of climate change that blurs the boundary between land and sea, and challenges the updating of building codes for all coastal communities. The old building codes by which coastal and other condominiums were built by developers in the 1970s and 1980s hardly anticipated to being buffeted by salty coastal air, or having their foundations exposed to underground seepage or high-velocity rains: the buildings haven’t budged much, despite some sinking, but demand to be mapped in a coastal ecotone, where their structures bear stress of potential erosion, concrete cracking, and an increased instability underground, all bringing increased dangers and vulnerabilities to the anthropogenic coast in an era of extreme climate change.

Rescue Workers in Surfside Disaster Attempt to Find Survivors in Champlain Tower South

A small beachside community bordering the Atlantic Ocean just north of Miami Beach, on a sandy peninsula surrounded by Biscayne Bay and the Atlantic, the residential community is crowded with several low-rise residential condominiums. While global warming and sea-level rise are supposed to be gradual, the eleven floors of residential apartments–a very modest skyscraper–that collapsed was immediate and crushing, happening as if without warning in the middle of the night. As we count the corpses of the towers residents crushed by its concrete floors, looking at the cutaway views of eerily recognizable collapsed apartments, we can’t help but imagine the contrast between the industry and care with which bees craft their hives of sturdier wax hexagons against the tragedy of the cracked concrete slab that gave way as the towers collapsed, sending multiple floors underground, in a “progressive collapse” as vertically stacked concrete slabs fell on one another, the pancaking multiplying their collective impact with a force beyond the weight of the three million tons of concrete removed from the site.

This post seeks to question if we have a sense of the agency of building on the shifting shores of Surfside and other regions: even if the building codes for working with concrete have changed –and demand changing, in view of the battering even reinforced concrete takes from hurricanes, marine air, flooding, and coastal erosion and seawater incursion near beachfront properties–we need a better mapping of the relation of man-made structures and climate change, and the new coasts that we are inhabiting in era of coastal change, far beyond sea-level rise.

Champlain Towers
Chandan Khanna/AFP

As we hear calls for the evacuation of other forty-year old buildings along the Florida coast, it makes sense to ask what sort of liability and consumer protection exists for homeowners and condominium residents, who seem trapped not only in often improperly constructed structures for an era increasingly vulnerable to climate emergency, but inadequate assurances or guarantees of protection. We count the corpses, without pausing to investigate the dangers of heightened vulnerability of towers trapped in unforeseen dangers building in coastal ecotones. Indeed, with the increased dangers of flooding, both from rains, high tides, storm surges, and rising sea-lelel, the difficulty of relying on gravity for adequate drainage has led to a large investment in pumping systems in the mid-beach and North Miami area. The sudden collapse of the building, which civil engineers have described as a “progressive collapse,” as occurred in lower Manhattan during the destruction of New York’s World Trade Center, the worst fear of an engineer, in which after the apparent cracking of the structural slab of concrete under the towers’ pool, if not other structural damage. The thirteen-story building, located steps from the Atlantic ocean, was part of the spate of condo construction that promised a new way of life in the 1970s, when the forty year-old building was constructed; although we don’t know what contributed to the collapse that was triggered by a structural vulnerability deeper than the spalling and structural deterioration visible on its outside, the distributed liability of the condominium system is clearly unable to cope with whatever deep structural issues led to the south tower’s collapse.

Americans who hold  $3 trillion worth of barrier islands and coastal floodplains, according to Gilbert Gaul’s Geography of Risk, expanding investment in beach communities even as they are exposed to increased risk of flooding–risks that may no longer be so easily distributed and managed among condominium residents alone. And the collapse of the forty year old condominium tower in Surfside led to calls for the evacuation and closure of other nearby residences, older oceanfront residences vaunted for their close proximity to “year-round ocean breezes” and sandy beach where residents can kayak, swim, or enjoy clear waterfront. The promise that was extended by the entire condominium industry along the Florida coast expanded in the 1970s as a scheme of development that was based on the health and convenience of living just steps from the Atlantic Ocean, offering residences that have multiplied coastal construction over time. While the tragic collapse suggests not only the limits of the condominium as a promise of collective shouldering of liabilities, it also reminds us in terrifying ways of the increased liabilities of coastal living in an age of overlapping ecotones, where the relation between shore, ocean spray, saltwater incursion, and are increasingly blurred and difficult to manage in an era of climate change–as residences such as the still unchanged splashpage of Champlain Towers South itself promise easy access to inviting waters that beckon the viewer as they gleam, suggested exclusive access to a placid point of arrival for their residents that developers still promise to attract eager customers.

Although the shore was one of the oldest forms of “commons,” the densely built out coastal communities around north Miami, the illusion of the Atlantic meeting the Caribbean on Miami’s coasts offers a hybrid of private beach views and public access points, encouraging the building of footprints whose foundations extend to the shores, promising private views of the beach to which they are directly facing, piles driven into wetlands and often sandy areas that are increasingly subject to saltwater incursion. The range of condominiums on offer that evoke the sea suggest it is a commodity on offer–“surfside,” “azure,” “on the ocean,” “spiaggia“–as if beckoning residents to seize the private settlement of the coasts, in a burgeoning real estate market of building development has continued since the late 1960s, promising a sort of bucolic resettlement that has multiplied coastal housing developments of considerable size and elevated prices. Is the promise to gain a piece of the commons of the ocean that the real estate developers have long promoted no longer sustainable in the face of the dangers of erosion both of the sandy beaches and the concrete towers that are increasingly vulnerable not only to winds, salt air, and underwater inland flow, but the resettlement of sands from increased projects of coastal construction?

If collapse of the low-rise structure that boasted proximity to the beach may change the condo market, the logic of boasting the benefits of “year-round ocean breezes,” has the erosion of the coast and logic of saltwater incursion in a complex ecotone where salty air, slather flooding, and poor drainage may increasingly challenge the stability of the foundations of the expanding market for coastal condos–and to lead us to question the growing liability of coastal living, rather than investing in seawalls and beach emendation in the face of such a sense of impending coastal collapse, as the investment in concrete towers on coastal properties seem revealed as castles in the sand.

If the architectural plans for the forty-year-old building insured adequate waterproofing of all exposed concrete structures, in an important note in the upper left, the collapse left serious questions about knowledge of the structural vulnerability in the towers, whose abundant cracking had led residents to plan for reinforcement. The danger that Surfside breezes sprayed ocean air increased the absorption of chloride in the concrete over forty years that it cracked, allowing corrosion of the rebar, and greatly weakening the strength of supporting columns that had born loads of the tower’s weight, significantly weakening the reinforced concrete. The towers had been made to the standards of building codes of an earlier era, allowing the possible column failure at the bottom of the towers that engineers have suggested one potential cause for collapse in ways that would have altered their load-bearing capacity–the lack of reinforced concrete at the base, associated with the collapse of other mid-range concrete structures often tied to insufficient support and reinforced concrete structures. The dangers of corrosion of concrete, perhaps compounded by poor waterproofing, of cast in place concrete condominium towers in the 1970s with concrete frames suggest an era of earlier building codes, often of insufficient structuring covering of steel, weaknesses in reinforced concrete one may wonder if the weathering of concrete condominiums could recreate between columns and floors–and potential shearing of columns to the thin flat-plate slabs whose weight they bore, creating a sudden vertical collapse of the interior, with almost no lateral sideways sway.

Courtesy Town of Surfside, FL
Champlain Towers
Chandan Khanna/AFP

Even as we struggle to commemorate those who died in the terrifying collapse of a residential building, where almost a hundred and sixty of whose residents seem to be trapped under the collapsed concrete ruins of twelve floors, we do so with intimations of our collective mortality, that seems more than ever rooted in impending climate disasters that cannot be measured by any single criteria or unique cause. The modest condo seems the sort of residence in which we all might have known someone who lived, and its sudden explosive collapse, without any apparent intervention, raises pressing questions of what sort of compensation or protection might possibly exist for the residents of buildings perched on the ocean’s edge. Six floors of apartments seem to have sunk underground in the sands in which they will remain trapped, in sharp contrast to the bucolic views the condominium once boasted.

Miami Beach Coast/Alamy

While the apparent seepage in the basement, parking garage, and Champlain South that ricocheted over social media do not seem saltwater that seeped through the sandy ground or limestone, but either rainwater or pool water that failed to drain adequately, the concrete towers that crowd the Miami coastline, many have rightly noted, have increasingly taken a sustained atmospheric beating from overlapping ecotones of increased storms, saltwater spray, and the underground incursion of saltwater. If the causality of the sudden collapse twelve stories of concrete was no doubt multiple, the vulnerability to atmospheric change increased the aging of the forty year old structure and accelerated the problems of corrosion that demand to be mapped as a coastal watershed.

The bright red of coasts in the below map seems to evoke a danger sign that is intended to warn viewers about heightened increased consumer risk, from the Gulf Coast to Portland to Florida to the northeast, as sustained exposure to corrosive salt increased risk to over-inhabited coasts, particularly for those renting or owning homes in concrete structures built for solid land but lying in subsiding areas along a sandy beach. Indeed, building codes have since 2010 depended on the gustiness of winds structures would have to endure and not only along the coast, as this visualization of minimum standards across the state–mandating the risks coastal housing needs to endure–a green cross-hatched band marking new regions added to endure 700-year gusts of wind, inland from Miami.

Gusts Required Residences to Endure by Minimum Building Codes since 2010

Florida received a low grade for its infrastructure from the incoming administration of President Biden–he gave the state a “C” rather grudgingly on the nation’s report card as he promoted the American Jobs Plan in April, focussing mostly on the poor condition of highways, bridges, transit lines, internet access, and clean water. The shallow karst of the Biscayne aquifer is a huge threat to the drinking supplies of the 2.5 million residents of Miami-Dade County, but the danger of residences has been minimized, it seems, by an increasingly profitable industry of coastal building and development. While incursion of saltwater inland remains a threat to potable water, the structural challenges of the new As coastal Floridians have been obsessed with working on pumps to empty flooded roads to offshore drains, clearing sewer mains, and moving to higher grounds, the anthropogenic coastal architecture of towering condominiums offering oceanfront views have been forgotten as a a delicate link whose foundations and piles bear the brunt of the ecotonal crossfire of high winds, saltwater, and salty air that contributed to the “abundant cracking” of concrete that is not meant to withstand saltwater breezes, underground incursion, or the danger of coastal sinkholes in the sandy wetlands where they are built.

It is hard to look without wincing at a visualization designed to chart cost effectiveness by which enhanced concrete would mitigate the damage of hurricanes and extreme weather to coastal communities.

The below national map colors much the entire eastern and southeastern seaboard red, as a wake-up call for the national infrastructure. In no other coastal community are so many concrete structures so densely clustered than Florida. If designed and engineered for land, they are buffeted by salty air on both of its shores, from the Gulf of Mexico and the Atlantic; wind speeds and currents make the coast north of Miami among the saltiest in the world–as high winds can deliver atmospheric salts at a rate of up to 1500 mg/meter, penetrating as afar as one hundred miles inland that will combine with anthropogenic urban pollutants from emissions to construction–creating problems of coastal erosion of building materials, as much as the erosion of beaches and coast ecosystem threatened in Miami by what seems ground zero in sea-level rise, and, as a result, by saltwater incursion, and indeed the atmospheric incursion of salty air–concentrations of chloride that is particularly corrosive to concrete.

And is the exposure of concrete structures across southern Florida to salty air destined to increase with trends of rising sea-levels, already approaching five inches, and projected to deviate even more from the historical rate along the coast, exposing anthropogenic structures from skyscrapers to residences to increased flow of saltwater air?

Dr. Zhaohua Wu, FSU

We are all mourning the collapse of the Surfside FL condominium whose concrete pillars were so cracked and crumbling to expose rusted rebar exposed to salt air. Built on a sandbar’s wetlands, reclaimed as prime property, the town seems suddenly as susceptible to structural risk akin to earthquakes, posing intimations of mortality fit for an era of climate change. The collapse of the southern tower in the early morning of pose questions of liability after the detection of the cracked columns, “spalling” in foundational slabs of cement that allowed structural rebar within to deteriorate with rust that will never sleep. Its collapse poses unavoidable questions of liability for lost lives and unprecedented risk of the failure to respond to concrete cracking, but the ecotonal nature of the Florida shore, whose stability has been understood only by means of a continuing illusion as a clear division between land and sea, as if to paper over the risk of a crumbling shore, where massive reconstruction projects on its porous limestone expose much of the state to building risk of sinkholes and the sudden implosion or subsidence of the sandy shore in a county that was predominantly marshlands, and the inland incursion of salty air that make it one of the densest sites of inland chloride deposition–up to 8.6 kg/ha, or 860 mg/sq meter–and among the most corrosive conditions for the coastal construction of large reinforced concrete buildings facing seaward.

Miami building collapse: What could have caused it? - BBC News

While coastal subsidence may have played a large role in the sudden instability of the foundations that led the flat concrete slab on which the pool to crack, and leak water into the building’s garage in the minutes before it collapsed, the question of liability for the sudden death of Surfside residents must be amply distributed. For the question of liability can be pinned to untimely review process, uncertainty over the distribution of costs for repairs to condominium residents, and the failures of proper waterproofing of concrete as well as a slow pace of upkeep or repairs, the distributed liability raises broad questions of governance of a coastal community. The proposed price of upkeep of facade, inadequate waterproofing, and pool deck of $9.1 million were staggering, but the costs of failure to prevent housing collapse are far higher–and stand to be a fraction of needed repairs for buildings across Miami-Dade County over time.

The abundance of concrete towers in Miami-Dade county alone along the coast poses broad demands of hazard mitigation for which the Surfside tragedy is only the wake-up call: the calls from experts in concrete sustainability at MIT’s Concrete Sustainability Hub (CSHUB) for a reprioritization of preparation for storms from the earliest stages of building design has called fro changes in building codes that respond to the need for increased buffeting of coastal concrete buildings, arguing that buildings should be designed with expectations of increased damage on the East and Gulf coasts that argue mitigation should begin from the redesign of cement by a better understandings of the stresses in eras of climate change that restructuring of residential buidings could greatly improve along the Florida coast–especially the hurricane-prone and salt incursion prone areas of Miami-Dade county both by the design of cement by new technologies and urban texture to allow buildings to sustain increased winds, flooding, and salt damage. Calculated after the flooding of Galveston, TX, the calculation of a “Break Even Mitigation” of investing in structural investment of enhanced concrete was argued to provide “disaster proof” homes, by preventing roof stability and insulation, as well as preventing water entry, and saltwater corrosion in existing structures, engineering concrete that is more disaster resistant fro residential buildings in ways that over time would mitigate meteorological damage to homes to be able to pay for themselves over time; the “Break-Even Mitigation Percent” for residential buildings alone was particularly high, unsurprisingly, along the southern Florida coast.

MIT Concrete Sustainability Hub (CSHub)

1. Although discussion of causes of its untimely collapse has turned on the findings of “spalling,” ‘abundant” cracking and spiderwebs leading to continued cracks in columns and walls that exposed rebar to structural damage has suggested that poor waterproofing exposed its structure to structural damage, engineers remind us that the calamity was multi-causal. Yet it is hard to discount the stresses of shifting ecotones of tides, salty air, and underground seepage, creating structural corrosion that was exacerbated by anthropogenic pollution. The shifting ecotones create clear surprises for a building that seems planned to be built on solid ground, but was open to structural weaknesses not only from corrosion of its structure but to be sinking into the sandy limestone on which it was built–opening questions of risk that the coastal communities of nation must be waking up to with alarm, even as residents of the second tower are not yet evacuated, raising broad questions of homeowner and consumer risk in a real estate market that was until recently fourishing.

The apparent precarity of the pool’s foundations lead us to try to map the collapsed towers in the structural stresses the forty year old building faced in a terrain no longer clearly defined as a separation between land and sea, either due to a failure of waterproofing or hidden instabilities in its foundations. And despite continued uncertainty of identifying the causes for the collapse of the towers, in an attempt to gain purchase on questions of liability, the tower’s collapse seems to reflect a zeitgeist of deep debates about certainty, the anxiety with which we are consuming current debates about origins of its collapse in errors of adequate inspection or engineering may conceal the shaky foundations of a burst of building on an inherently unstable ecotone? While we had been contemplating mortality for the past several years, the sudden collapse. of a coastal tower north of Miami seemed a wake-up call to consider multiple threats to the nation’s infrastructure. Important questions of liability and missed possibilities of prevention will be followed up, but when multiple floors of the south tower of the 1981 condominium that faced the ocean crumbled “as if a bomb went off,” under an almost full moon, we were stunned both by the sudden senseless loss of life, even after a year of contemplating mortality, and the lack of checks or–pardon the expression–safety nets to the nation’s infrastructure.

The risks residents of the coastal condominium faced seemed to lie not only in failures of inspection and engineering, but the ecotonal situation of the overbuilt Florida coast. Residents seemed victims of the difficulties of repairing structural compromises and damage in concrete housing, and a market that encouraged expanding projects of construction out of concrete unsuited to salty air. As much as sea-level rise has been turned to visualize the rising nature of risk of coastal communities that are among the most fastest growing areas of congregation and settlement, as well as home ownership, the liability of the Surfside condominium might be best understood by how risk is inherent in an ecotone of overlapping environments, where the coast is not only poorly understood as a dividing line between land and water, but where risk is dependent on subterranean incursion of saltwater and increasing exposure inland to salt air, absent from maps that peg dangers and risk simply to sea-level rise? The remaining floors of the partly collapsed tower were decided to be dismantled, but the disaster remains terrifyingly emblematic of the risks the built world faces in the face of the manifold pressures of climate change. While we continue to privilege sea-level rise as a basis to map climate change, does the sudden collapse of a building that shook like an earthquake suggest the need to better map the risks of driving piles into sandy limestone or swampy areas of coastal regions exposed to risks of underground seepage that would be open to corrosion by dispersion of salt air.

Florida building collapse video: Surfside, FL condo disaster | Miami Herald

The search for the bodies of residents buried under the rubble of collapsed housing continued for almost a full week, as we peered into the open apartments that were stopped in the course of daily life, as if we were looking at an exploded diagram–rather than a collapsed building, wondering what led its foundations to suddenly give way.

Michael Reeves/Getty Images

As I’ve been increasingly concerned with sand, concrete, and the shifting borders of coastal shores, it seemed almost amazing that Florida was not a a clearer focus of public attention. The striking concentration of salts that oceans deposited along the California coast seemed a battle of attrition with the consolidation and confinement of the shores. Long before Central and Southern Florida were dredged in an attempt to build new housing and real estate, saltwater was already entering the aquifer. As the Florida coast was radically reconfigured by massive projects of coastal canalization to drain lands for settlement, but which rendered the region vulnerable to saltwater, risking not only contaminating potable water aquifers, but creating corrosive conditions for concrete buildings clustered along the shores of Miami-Dade County across Fort Lauderdale, Pompano Beach, as much of Florida’s coast–both in terms of the incursion of saltwater and the flow of salty air, that link the determination of risk to the apparent multiplication of coastal ecotones by which the region is plagued, but are conceptualized often only by sea-level rise. Even as Miami experienced a rise in sea-level some six times the rate of the world in 2011-2015, inundating streets by a foot or two of saltwater from Miami to Ft. Lauderdale was probably a temporary reflection of atmospheric abnormality or a reflection of the incursion of saltwater across the limestone and sand aquifer, lying less than two meters underground. Did underground incursion of saltwater combine with inland flow of salty air in dangers beyond tidal flooding in a “hotspot” of sea-level rise? One might begin to understand Surfside, FL as prone to a confluence of ecotones, both an overlapping of saline incursion and limestone and its concrete superstructure, and the deposit of wet chloride along its buildings’ surfaces and foundations, an ecotonal multiplication of risk to the consumers of buildings that an expanding real estate market offered along its pristine shores.

Approximate Inland Extent of Saltwater Penetration at Base of Biscayne Aquifer, Miami-Dade County, USGS 2018

While the inland expansion of saltwater incursion and penetration has become a new facet of daily life in Miami-Dade County, where saltwater rises from sewers, reversing drainage outflow to the ocean, and permeates the land, flooding streets and leaving a saltwater smell in the air, the underground penetration of saltwater in these former marshlands have been combatted for some time as if a military frontline battle, trying to beat back the water into retreat, while repressing the extent of the areas already “lost” to the sea. If the major consequences of such saltwater intrusion are a decay. and corrosion of underground infrastructure as water and sewage pipelines, rather than the deeply-set building foundations of condominiums that are designed to sustain their loads, the presence of incursion suggests something like a different temporality of the half-life of concrete structures that demands to be examined, less in terms of the damage of saltwater incursion on building integrity, than the immersion of reinforced concrete in a saline environment, by exposing concrete foundations to a wetter and saltier environment than they were built to withstand, and exposing concrete to the saline environment over time.

As much as we have returned to issues of subsidence, saltwater incursion, and other isolated data-points of potential structural weakness in the towers, the pressing question of the temporality of building survival have yet to be integrated–in part as we don’t know the vulnerability or stresses to which the concrete foundations of buildings perched on the seaside are exposed. The very expanse of the inland incursion of saltwater measured in 2011 suggests that the exposure to foundations of at least a decade of saltwater have not been determined, the risks of coastal buildings and inhabitants of the increased displacement of soils as a result of saltwater incursion or coastal construction demands to be assessed. The question of how soils will continue to support coastal structures encouraged by the interest of developers to meet demand for panoramic views of coastal beaches. While the impact of possible instability on coastal condominiums demands to be studied in medium-sized structures, the dangers of ground instability created by increased emendation of beach sand, saltwater incursion, and possible subsidence due to sinkholes. All increase the vulnerabilities of the ecotonal coastline, but only by foregrounding the increased penetration of saltwater, salt air, and soil stability in the increasingly anthropogenic coast can the nature of how ecotonal intersection of land and augment the risks buildings face.

Continue reading

2 Comments

Filed under anthropogenic change, climate emergency, coastal change, coastlines, shores

A New Other Green World? Mapping Algae Populations and Tracking Harmful Algae Blooms

Access to pure freshwater seems an innate right, and freshwater lakes conjure pristine landscapes.  But the twinned threats of global warming and industrial farms threaten to alter the geography of watery world in an apparently definitive fashion, as rivers, ponds, and lakes across America–and the world–have been found to be teeming with toxic algae.   In what seems to be a brazen photoshopping of photographs of the Great Lakes, the apparent aquatic “greening” of formerly fresh waters in fact carries quite sinister associations.  The abundant algal blooms in the Great Lakes recall the modern miracle of the annual greening of the Chicago River each St. Patrick’s Day, but are of much more anthropogenic origin.  Appearing at regular times and places, they raise a corner on a changing relation to the worldly environment.

But they are also–in the manner of all “offshore” events–both particularly challenging to chart or to measure by fixed or clearly demarcated lines so often employed in terrestrial maps.  Rather than being photoshoppped, the satellite maps make points difficult to interpret or decode, even if they trigger immediate danger signs of the dawn of a different world, and a quite different national map of the extent of our potable water.  They prompts questions of how to map man’s impact on the shifting environment of the Great Lakes.

lake-erie-habs

Populations of algae move with the currents of local waters, as the blooms of pools enter rivers and rush down streams, as a weirdly alien presence in water supplies that have impacted fish in many ways, and stand to impact humans as well.  As we start to chart our relation to their presence, their emergence in select spots of the US and other countries demands to be connected to one another, or placed in a causative web geographic as much as environmental.  The nature of this greening suggests a new presence of the bacteria in the world.  For Northrop Frye, the “green worlds” in Shakespeare’s plays connoted a pivot scene of action–an extra-urban environment producing to reflective individual insight of a personal nature but also a setting to overcome natural challenges that stood for inner obstacles.  The argument that Frye formulated in 1957 paralleled the earliest ecological movement–one thinks of the founding of the Nature Conservancy (1951), as well as the Wilderness Society (1935) and Defenders of Wildlife (1947), but also of the success of blocking the damming of the Colorado River at the entrance to the Grand Canyon National Park, and the fruits of many volunteers in the Civil Conservation Corps that, before the war, put many men to work on conservation projects.  The critical moment of the appearance of green algae in waters across midwestern America suggest not only an environmental challenge, which in 2011 cloaked one-sixth of Lake Erie’s surface, but prompt needed reflection on both a local and a global struggle with environmental change–linked not only to rising temperatures, but to the increasing over-saturation of nitrate-rich fertilizer in agricultural run-off.

Algae populations are not usually mapped as the populations, but the recent spread of algae in what was once called American freshwater lakes and rivers has not only generated significant media attention and concern.  For it posed problems of locally mapping of algal growth in compelling ways–not only for fishing or swimmers, but for communities and regarding the potability of water piped into public circulation.  While algal blooms are the concern of environmental studies or marine biologists, more than geographers, their inescapability as part of the impact of humans on the environment force us to include them within our spatial experience and  geographic horizons:  it is as if the very bucolic settings we had known are being reconfigured as nature, and dramatically scenographically redesigned, and their origins remain ineffectively mapped, even if they are often bounded by vague warning signs.  Where did these blooms arise, and can we relate their inland flourishing to the mapping of their marine migration?  Can they be placed, more importantly, not only in a given set of waters that are polluted, but within a web of land-use that unintentionally geographically redistributes nitrates and phosphorous so that they tip the crucial quotient of algal populations and bacteria in the waters that lie in rural areas, near to farmlands?  The abundant greening caused by rural pollutants pose a major ecological imbalance still neither comprehensively acknowledged nor assessed.

Ages before online memes circulated about dating of the anthropocene in the guise of critical thought, George Perkins Marsh declaimed the widespread environmental changes effected by human actions as anthropogenic in scope.  Back in 1860, Marsh bemoaned dangers posed to mountaintops and  deforestation and evoked the losses that were the result of dried water channels, reducing meadows to parched infertile stretches and creating sand- or silt-obstructed streams where irrigation occurred, poetically lamenting the shifting ecology which “converted thousands of leagues of shallow sea and fertile lowland into unproductive and miasmatic morasses”:  Marsh’s 1874  The Earth as Modified by Human Action was written in the hope “to suggest the possibility and the importance of the restoration of disturbed harmonies and the material improvement of waste and exhausted regions.”   It set the template for Paul Crutzen’s later dating the “anthropocene” and its diffusion as a critical concept and a form of global introspection about our environment:  and as that impact becomes ever more apparent, the recent appearance of toxic algal blooms.  Algae blooms offer one measure for mapping the advent of anthropocene.  Can one map the dawn of the anthropogenic in cartographical terms?  Actively mapping such population in freshwater and marine bodies of water are as visually striking an index as any of the impact of poorly agricultural planning and practices on living geography.  In a sort of stunning irony or counterpoint to the nosedive of the worldwide algal mass by 40% over the past sixty-five years, a huge reduction of biodiversity of marine ecosystems altering the marine food web, the appearance of algal blooms is less linked to human impact on the environment.  Could expansion of the ozone hole, and global warming, be easier to render compellingly in a graphic map, and toxic algae harder to register in compelling cartographical forms?  Or is the appearance of blooms just too overwhelmingly entangled in multiple circumstantial factors that already assume inevitability–from global warming to chemical fertilizer–that the map seems a fait accompli?

Marsh was also an active champion, of course, of a more custodial relation to the water, forest, and the land.  The problem of mapping algal blooms in a coherent or compelling manner is problematic, even though the data is there, and the visualizations in snapshots of lakeside scenes arresting.  The recent rise of “toxic algae” are, while apparently visible to Google Earth, difficult to decipher on maps, or even in satellite images, which carry ominous signs of a changing global geography with immense impacts to human and animal life alike–the effects of whose shifting bacterial populations radiate out from local ecosystems to human disease, but are rooted in a deep uncertainty that something in our bodies of water is either just out of kilter or deeply wrong.  But the hardest question is how to compel attention to these maps, which provide a basic charge for understanding and communicating how the blooms spread, as well as the networks of causation that contribute to such strikingly hued waterborne algal populations.

Cwall99_lg

This 1999 image of algal blooms off the southern coast of Devon provides a visualization of the spread of harmful blooms of toxic algae that have hurt the whales and dolphins who have ingested them, as other fish.  Dissecting data visualizations of the prominence of such toxic algae or “harmful algal blooms” in oceans or inland raises pressing questions about their nature and causation, and about the salient mechanics that might be revealed in how such blooms might be better or more clearly mapped in web-based platforms.  In an age of the omnipresence of Google Earth, or satellite views of significantly high resolution, as well as MODIS, as well as the imaging spectrometer MODIS aqua of high resolution launched in 2002, the measurement of water populations should not be difficult to define:  but the presence of algal blooms requires increasing introduction of data layers based on local detection, in ways that the surface appearance of all aquatic environments just cannot register alone.  Algae provides a case for looking at the unmapped, and mapping the sort of rapidly reproducing migrant bacterial populations in aquatic environments that are otherwise particularly difficult to detect by superficial observation–until they have already rapidly progressed or bloomed.

Algae’s presence in lakes was rarely a mapped population or identified as a species until the spread of toxic “harmful algae blooms” (HAB’s) and alarms over cyanobacteria:   algal populations have recently gone off the charts, and the explosion of their accumulated biomass has created huge alterations both in food web dynamics–and sucking off most of the oxygen in waters on which fish depend–as well as increasing the growth of bacteria that themselves pose dangers to human life, best known in the bacterial spread of the so-called “Red Tide” of Karenia brevis that flourished in ocean waters off the coast of Florida during the late 1970s–but more terrifying, and considerably more difficult to track, across the freshwater lakes, ponds, and rivers that are often sources of drinking water.  Mapping and charting the presence of bacteria in waters is notoriously difficult, born as they are by currents, weather, water-depth and amount of refuse that locally enters waters, and the alarming visuals of chromatic variations caused by algal presences in aquatic environments poses practical challenges to visually represent in maps that combine dispassionate distance and analytic engagement.

hab

These maps are less fun or enjoyable to read, if only because they so often bear bad news.  The adverse effects of algal blooms on local animal populations and food webs are even more difficult to track along clear analytics, although a varied range of metrics and maps–from MODIS satellite views of remote sensing to GIS plotting of specific readings to Google Earth views and aerial photographs.  Even as folks are downing Spirulina and eating Kelp, the pernicious cyanobacteria of green-blue algae blooms, The effectiveness of the beauty of mapping algae is difficult to effectively use as compelling narratives, however, whether about that danger, or in ways that overcome the difficult distaste of the un-kelp-like sludge of algal blooms, about the alarming spread of Harmful Algal Blooms (HAB’s) either off the shores of the United States or as effectively clogging food webs in its lakes.  As of 2013, health authorities issued advisories and warnings on algal blooms at 147 different sites and untold cost and environmental impact due to such harmful blooms, of which no systematic collation seems to exist.

Mapping the presence of such HAB’s is not only a question of reporting locations of efflorescence, but of mapping both the causative webs by which they seem to emerge with the deposits of phosphorous-rich fertilizer and waste in rivers and runoff, as well as mapping the impact of blooms within food webs and food-cycles, although it is often discussed primarily or solely in regard to its potential dangers to humans–given the neurotoxins that it has produced in rivers, lakes, and even waterfalls in Minnesota, as well as Michigan, Illinois, Kentucky, Pennsylvania, Vermont, Ontario, Ohio, and even the Sacramento River delta, in addition, most famously, to Lake Erie–whose shallow waters encourage algae blooms, and where locals of recently sought a joint US-Canadian agency called for the immediate imposition of fixed limits on local fertilizer use.   If over 140 sites of algal blooms are present in the bays, ponds, and lakes of New York State alone, and in many lakes across the world, the widespread occurrence of such blooms have been tied to fertilizer runoff, but their endemic presence in so many freshwater lakes have only relatively recently been systematically tied to outbreaks of disease.

Hand of HAB

Only now is the huge efflorescence of algae blooms being linked both to the production and broadcast dispersion of industrial fertilizers.  One back story that demands to be mapped is the effect of the longstanding encouragement that farmers in the United States have received to  minimize plowing of their lands, less the huge carbon mass that regularly tilled lands release not only erodes the atmosphere but degrades the soil itself; tilling costs more to pursue in a systematic way, and, especially in large farms, has been discarded as farms have shifted their equipment for tilling to a program of “no-till planting” that uses machinery to drill seeds into undisturbed soil, and scatter fertilizer atop in prepared pellet form that needn’t be entered into the soil by tilling machines–even though such pellets depend on rains to enter the soil, and up to 1.1 pounds of fertilizer per farmed acre enter rivers directly in rainwater, as a result, rather than serving to fertilize the soil, working to effectively unbalance ecosystems far beyond the bounds of farmed lands.

Harmful algae blooms’ explosive off the charts growth responds to a confluence both of high usage of fertilizer in crops and lawns, intensified by rapidly rising temperatures that foment their spread in freshwater and seawater alike:  the expansive growth of algae seems something of a by-product of our current global warming trends, as the increased summer heat provides an optimum occasion for spurts of algal growth, nourished by streamed-in phosphorous and other animal wastes, in ways that change the microbial populations of freshwater lakes.  And the world of rapidly growing algae has deep consequences for public health.  For rather than the edible sorts of seaweed, the toxicity of algae in freshwater systems is all too likely to foster bacteria-levels in human drinking water and fish that are not usually seen, making the mapping of stagnant water algae of increasing concern in much of the midwest and northeast–especially nearby sites of large-scale or industrial agriculture.  What are the best ways that algae can be mapped, or that the mapping of algae can be a proactive safeguard on the responsible stewardship of the toxicity of agricultural and lawn run-off?

The blaming of substandard practices of fertilizing soil and huge expansion of chemical fertilizers with phosphorous, combined with the increased problems of storing waste, create a new geography of pollution that renders human impact salient by the spread of an algae bloom crisis around the Great Lakes, which since 1995 have emerged in the Maumee River that feeds the Great Lakes and runs through many factory farms in these inland lakes:  increasingly, Kansas is reporting widespread algae blooms in lakes, as well as Pennsylvania and Kentucky, according to the Kentucky Department for Environmental Protection blog and which the Courier Journal describe as the first cases beyond the lower Midwest.

Screen-Shot-2013-09-24-at-11.17.56-AM

Even when not toxic in nature, the problem of uncontrolled algae blooms lies in their absorption of all oxygen from the body of water in question.  The predictive maps of expansive algal blooms specifically in Lake Erie, where aerial photographic visualizations recorded the  record levels of 2011, warn of the spread of toxic blue-green algae–a harmful algal bloom (HAB), focussed on the lake’s western basin, based on the careful reading of the nutrients that flow into the lake.  The new levels of algae that have steadily increased in recent years, hark back to the algal blooms of the 1960s and 1970s in the same region of the lake.  But the blooms have recurred with a new intensity, spurred by hot weather and an increased amount of phosphorous, sewage, and manure into Ohio lakes and streams, boosting the blue-green cyanobacteria to new levels last summer that more than doubled previous years–increased by the accepted practices of broadcasting fertilizer on fields without tilling, and the reluctance of the Environmental Protection Agency to issue any warning on cyanobacteria in these waters–even after the algal blooms broke previous records in the summer of 2011–although we know that colorless odorless carcinogens like microcystins can linger long after the blooms have left.   Mapping the blooms proses a problem of going beyond geo-visualizations or aerial photography as a way of mapping the flow of bacteria and subsequent algae blooms that deoxygenate waters in an easily legible form, or linking the toxicity of blooms to set intensities.

Are we even close to cultivating the ability to read the levels of toxic agents like microcystins in algae blooms, or able to find reliable ways of transcribing their potential harmful side-effects? The specific case of Lake Erie, specific both since it is one of the densest sites of such blooms and on account of its low water-level, may itself be predictive of the danger of algal blooms in future years.

lake-erie-habs

The 2011 bloom was rapid and sudden, as is apparent in two aerial photographs of the lake snapped just five months apart, between June 1 2011 and October 5, which illustrates the blossoming of the algae under the summer’s sweltering sun:

0315-nat-ERIE_webNew York Times; source: NOAA Centers for Coastal Ocean Science; data from NASA MODIS sensor

If not a map, the green coloration of the algae highlighted the frontiers of its expansion so effectively as if to isolate that one feature within the aerial photograph.  Such local photographic “mapping” of the density of toxic algae blooms is perhaps the most compelling chart of their impact.  But the expansion of algal blooms, if similar to that covering 300 square miles in 2003,  now threatens to spread across the entire southern shore, has been closely tied to new levels of toxicity, producing liver and nerve toxins, and creating a dead-zone of oxygen-depleted fish.  If not as severe as it was in 2011, when remotely imaged by MODIS satellite revealed a particularly disturbing concentration of cyanobacteria close to Detroit and along several spots of the lake’s shore, before extending from Toledo to Cleveland in 2011.

erie-forecast-art-gmqnkink-10703gfx-erie-forecast-compare-eps MODIS Cyanobacterial

The existence of sediment in the Great Lakes revealed a distribution of particularly thick portions of algal spread, no doubt particularly notorious due to its low average depth of just 62 feet.  At the same time as Western Lake Erie continues to experience a fairly unprecedented resurgence of toxic algal blooms,  health advisories and “do not drink” orders have been issued by the state of Ohio, although Michigan, which lacks a formal monitoring program to monitor waters’ purity, has not issued any:  the current debate on the Farm Bill has led to a jeopardized program of Conservation Stewardship and fails to include controls to encourage farmer’s to monitor their effects on water quality–or even to set uniform standards for the toxicity of HAB’s to drinking water, local ecosystems, or lake life.

Algal Blooms 2012 true

Modis Green Erie

The spread of their population in the lake was visible on Google Earth:

Algea on Google Earth

The intense concentrations of algal blooms can be likewise revealed due to remote sensing of the absorption of light in the lake’s water, to image the toxicity of the most polluted of the Great Lakes. based on data from the International Space Station.

Lake Erie satellite image

Looking at lake Erie provides something of a well-mapped test case of algal blooms.  Most of the blooms are typical of the over 200 toxic blooms in the United States, due to run-off of fertilizer and manure in rivers and lakes, often carried by heavy rains, often confined to the northwest, but spreading throughout the high farming regions of the midwest, where phosphorous no doubt increasingly leaches to water supplies–leading to public health warnings and closures of lakes or beaches.  Rainfall has increased the flow of agricultural run-off and nutrient-rich storm water into rivers and lakes, providing food for algae to grow to toxic levels.  Indeed, the National Oceanic and Atmospheric Administration has developed an early detection and forecasting system for the Gulf of Mexico by using remotely sensed data to monitor harmful algal blooms beyond the Great Lakes and Chesapeake Bay–some of the largest repositories of freshwater in the United States–and in over one hundred and forty sites as of the summer of 2013.  And the clean-up of many Minnesota lakes has led to a call for reducing the use of nitrogen-rich and phosphorous-based fertilizers by some 45%, although no realistic ways for achieving the goal–which might not even be as high needed to reduce algal blooms–has been defined. The difficulty that occurred when a satellite photograph of Lake Ontario suggested a similar efflorescence of blue green algae blooms of cyanobacteria in that large body of water led an overwrought panic-attack to be voiced on Twitter, as the photograph that ostensibly boded the local arrival of an onslaught of heptatoxins, already problematic in Hamilton Bay, to have metastasized to the lake as a whole.

L-Ont-bloom-580x386

But the “bloom” was a boom of plankton–mostly plankton like diatoms, and chrysophytes, dinoflagellates, in other words, which are often mistaken for blue green algae in remote sensing, although blue green algae blooms just a small amount of it, and little cyanobacteria–was an optical illusion.  The apparent errors in the imaging of algal blooms suggest a greater difficulty in its accurate mapping, and makes us rely on self-observations by water-sampling for certitude.

This is not to minimize the danger.  But only to warn of the limitations of tracing by superficial observation.  The actual potential for the sudden spread of HAB’s in the continental United States is in fact quite serious, however, as is the need for ensuring water-quality standards in many rural regions–from questions of potability to the eventuality of die-offs of fish.

blooms across USA

The interest of this very broad-scale map is the proximity of blooms to large-scale farms raising cows and pigs:  such  concentrated animal feeding operations (CAFOs) generate unduly concentrated amounts of livestock waste in precise locations–termed “liquid lagoons”–thee liners of whose storage tanks regularly leak in heavier rainstorms, creating a manure run-off from poorly regulated sites into lakes.  The EPA estimates that over half do not have Clean Water Act permits, creating deep problems of local stewardship that becomes evident in the efflorescence of toxic algae blooms–but only long after the fact–in ways that reveal the ingrown nature of poor standards of agrarian stewardship.  Living in the right town, we might see such headlines as Citizens of the Town of Lincoln, Kewaunee County are concerned that the Kinnard Farms Inc. plan to manage 70 million gallons of untreated animal waste doesn’t protect groundwater from contamination, or How Big Meat is taking over the Midwest, describing the widespread multiplication of permits for such “poo lagoons” in the landscape to hold the refuse of the 19.7 million pigs raised annually in that state alone, and the return of a booming industry in 2011.

Factory Farms Focus on Iowa?

Lying down water of such overflowing containers of animal feces creates a possibility of toxic contamination that is particularly difficult to contain–especially when fueled by an unnatural abundance of phosphorous and nitrates that has all too often been insufficiently or ineffectively tilled into agrarian lands.  The contamination of so many of Minnesota’s lakes offers a sad case in point.  The striking case of green waterfalls in Minnesota suggests something like a direct inversion of the rural picturesque–and a compelling need for new standards of river pollution or run-off, as well as intensive attention to the tilling of fertilizer so that it remains buried as much as possible underground.

Operation-Downspout-Logo

Somewhat more ecologically conscientious states, like Vermont, removed from the landscape of the factory farms, have begun to provide interactive local maps to measure and track the intensity of algal blooms, of “blue green algae tracking,” as this map recording the blossoming of green by the shores of Lake Champlain–a tourist destination–that are considerably interactive and detailed, as well as allow a considerable fine-grained detail of local reporting that are incorporated into visual overlays for ready consultation each day.

Algae by Burlington

Others, like Florida’s inland waters, have seen massive toxic algae outbreaks that have killed manatees, fish, and birds, as well as dolphins in the Indian River Lagoon, where fluorescent green slime filled the river this past summer, leading to widespread health warnings.  Of course, such a menace is not only localized:  the actual specter that is haunting the mapping of algae comes from China–where, coincidentally, few controls exist on fertilizer or greenhouse gasses, and algal blooms fill large, slow-moving rivers like the Sichuan.

220px-River_algae_Sichuan

In the course of preparation for the 2008 Olympics that the Chinese government pulled some 1,000,000 tons of green algae from the Yellow River, famously, relying on some 10,000 soldiers in the project to remove the waste, leading folks to just negotiate with algal blooms as they appear, and their relative toxicity not to be tested.

green-algae-bloom-china-lake-wading_37797_600x450

The disquiet conveyed by the images of raking algic scums off the Yellow River, or of swimmers happily standing waste-deep in the light green blankets of what looks less like fresh parsley than artificial coloring can only be viewed with the alarm that Bartholomew Cubbins witnessed the arrival of Oobleck in the Kingdom of Didd.  (We might reconsider the assumption that the last printed work in the Dr. Seuss corpus, The Lorax, was the one most directly about the physical environmental.)  Indeed, the comparisons of Oobleck to HAB’s seem unavoidable given their sudden ubiquity across so many of the changing climates of the United States and world.

220px-Oobleck_Cover

Mapping something as imaginary as Oobleck might be an apt association, if intentionally slightly ridiculous if evocative comparison, but the odd appearance of green toxic slime in freshwater deposits evokes the sudden omnipresence Oobleck quickly acquired in all Didd.

oobleck in act

The fear of self-generated Oobleck seems implicit in much literature.  Indeed, Qingdao’s 2013 summer scourge of “surf like turf” meant the arrival of what locals called “sea lettuce.”   Perhaps from the farms of Nori on Japan’s Jiangsu coast, or from irresponsible farming in China itself, the consequence of a massive failure of marine stewardship created currents of harmless-to-humans algae running toward the center of the Yellow Sea.   The blooms, given the run-off of nitrate-rich fertilizers from farms and industry, didn’t seem to threaten beaches often used as centers of tourism, but created an odd sight of bathers luxuriating in the aquatic lettuce they were told had not toxicity.  The algae are often regarded as harmless to humans.  But harmless to fish they are not:  the algae serves as a ravaging of the aquatic ecosystem:  bright green beds of algae were deemed a “large-scale algae disaster” by the Shandong province, and 19,800 tons of it cleared as it started to decompose, releasing noxious fumes of toxic hydrogen sulfide gas, at a cost of over $30 million.  The relation between harmful algae and the local ecosystem or food chain has not been fully explored to map, despite the wide ramifications of its impact on the greater food chain.

floraison-massive-algues-vertes-chine

The explosion of algae blooms has been linked to the rise of the so-called red tides in the Gulf of Mexico, has already hit our coasts as well:  southern California coast and Florida have both placed a new premium on mapping the density of algae that flourish in these warm ocean waters, which have long been worried to disrupt local ecosystems and food chains, before the toxicity of fertilizer-fueled algal blooms started to appear inland.  These tides have largely been treated as dangers to marine life, and specifically to the shellfish regularly harvested there, however, and were consequently charted and mapped in relation to water currents, salinity, and winds, to get a picture on their sources of origins of these concentrations of  dinoflagellates of reddish hue that so rapidly accumulated along the Florida coasts from purple to pink, and which seem–despite their name–to be entirely independent of tidal flows, but were toxic to birds, fish, and mammals, and potentially harmful to human beings when consumed in shellfish.  The awareness of this vector of transmission has led to the monitoring of these early HAB’s, which have disrupted fisheries along the Atlantic as far north as Maine, and, according to some were witnessed in Canada as early as 1793 in British Columbia:  but far more recent measurement of red tides in northern California, where they created a massive die-off of shellfish, the Gulf of Mexico, the Southwest Florida coast, Malaysia, Maine, and Massachusetts, killing fish, manatees, and shellfish like abalone, has led to increased NOAA alerts and concerns of respiratory irritations at beach shores.

Is such efflorescence due not only to lower rainwater that flushes the system of oceans, and increased warming, but also to the nitrate-rich outflow of fertilizer from Florida plains, and indeed the Mississippi?  The lack of tilling in larger farms, driven by the needs to produce more crops in their growing seasons, has encouraged the dispersion of high-grade fertilizer across the Midwest, most of whose runoff enters the same waters. Indeed, the inland growth of HAB’s echoes historical documentation of the approach of “red tides” that endangered shellfish and fish living along Florida’s western coast in recent decades.

The ability to survey the massive growth of Karenia brevis organisms in the warm shallow waters of Florida’s western coast, and the dangers that they posed to local fish and marine life, benefit from the extension of data and record-keeping along the Florida waters since 1954 by multiple agencies.  The data creates a context for data visualizations of the expansion of the “red tide” of HAB’s in ocean waters near to an exceptionally rich and endangered ecosystem, but also one huge stretches of whose coast falls under environmental protections for endangered species, and whose waterfront economy enjoys far greater protection than most inland lakes.  By exploiting the largest continuously recorded database of Harmful Algal Blooms in the United States–and world–we can examine the spread of sites of the Red Tide of 1979 in relation to ocean currents, which appear, based on data from Florida Marine, clearly clustered in shallower waters by the ocean coast:  maps track the abundance, intensity, and duration of growth of Karenia brevis by color, switching to rectangles for the largest, and the extent of their presence by shape-size, based on data collected on November 1979, Christmas 1979, December 20, and January 20, 1980.  They reveal the algal spreads as moving quite rapidly from being concentrated around Tampa Bay along the coast to Naples in dense brightly colored blooms that flourished for the longest time near bays, often in the shallower waters sometimes within the red line marking a distance of 18 kilometers off the coast, where they have most contact with shellfish.  The evolution of these animated static maps provides a temporary solution, based on intensive compilation of water data by the Florida Coastal Commission, but provides an exception of the degree of successful visualizations of algal presences in aquatic environments.

Nov 2 1979--Florida Marine

FLorida Marine 1979 Red Tide

Florida marine Dec 30 1979

Red Tide Expands 1979 Florida Marine

The “tide” returned in 1985 to the shallow waters off the beaches and coastal inlets of western Florida, pictured with a key of the local density of blooms which is also applicable to reading the above images, and the increased presence of blooms on New Year’s Day 1986:

Florida Marine carina 1995

Florida Marine Key

new year's day 1986

More recently, Florida’s Fish & Wildlife Research Institute charted the same coastal waters of its coasts.  By using readings that were based data for the NOAA Ocean Service and Satellite Information Service, who registered high levels of marine chlorophyll by MODIS Aqua imagery, bacteria clearly hovered especially, when present, around the Floridan shores and coves in which they multiply.  Does this suggest that they are specific to shallower, warmer waters, or more likely densest at the very point when they enter the seawater in such high concentration from the land?  Commonly known as “red tides,” these off-coastal aggregations of algae, again Karenia brevisseem largely in decline on Florida’s southwest coastal waters for the present, but had long flourished on its relative shallow ocean shelves.

Florida Fish and Wildlife HAB

Or, in October 2013,

October 2013 Florida Fish and Wildlife RI

But the bacteria and algae are focussed not so much offshore–notwithstanding the so-called Red Tides–but rather in the very estuaries and inlets where freshwater leaches out into the surrounding seas, evident in this self-reported data of algae via Google Maps, where sightings were crowded upstream the inlet of the St. Lucie St. Park Preserve, with a congestion that travelled up the course of its river.

Google Maps St. Lucie River, 2013

Indeed, the particular porousness of these offshore waters in the below engraved map, which shows a region characterized and distinguished by circulation of rivers in wetlands and estuaries, so long characteristic of Florida and much of the American south, struck early cartographers as so distinct by its density of estuaries.  The map, in the context of this blog, provides a striking contrast as Ooblek-free, even if its territory was far more submerged and coasts follow far more irregular lines.  This early eighteenth-century map–possibly 1720-30–this version courtesy of the expanding on-line collections of David Rumsey, offers the start of something like a cartographical archeology of the region, whose coves and inlets evoke a pristine Gulf of Mexico, fed by multiple rivers from the southern plains still inhabited by Native American Peoples:

Florida--part of America

Florida at that time was described by the cartographer as a “Neck of Lakes and Broken Land, surrounded by man-eating Indians, whose Straits were nourished by streams, before being included in Herman Moll’s Atlas, with its rendering of glorious irregular shorelines, inlets, and islands that suggest a Florida before the expansion of landfill and filling in of much of the southern state.   There is something akin to a raining of Oobleck in Florida, the sudden and widespread appearance of HAB’s in modern maps of different states offers a point of entry into how the map can be taken as a rendering and record of man’s impact on and relation to the land, or of how our maps of human knowledge provoke questions of how to map man’s own relation to the remaking of the environment, less by setting the benchmark of a given date, but by how  it slowly started to be filled up with lots of sorts of shit, all of human origin or introduction.  To look at the elegant bird’s eye map that John Bachmann designed of Florida, among his many images of the southern states of America of 1861, printed as a collective “Theater of War,” the mapping of the water surrounding the peninsula shows a much more clearly integrated web of land and water.  In the panorama the peninsula is colored a light green oddly reminiscent of the algal blooms, but the green land, fertile with rivers crisscrossed with estuaries and permeated by lakes where brackish waters surrounded archipelagoes of islands, each its own flourishing ecosystem, and shipping docks, suggest an interpenetration of green land and water in a settled land.

Panorama of Florida

Northrop Frye coined he notion of travel in and to the Green World as a dramatic device evoking a crucial passage, which the protagonists must survive in order to restore balance to the actual world and to the plot.  One could argue that travel to old maps, rather than being only a form of antiquarian indulgence, provides and affords something of a parallel site of reflection on our environment.  The Green World that they present is an “other world,” and a world that seems increasingly distant as our own bodies of water are polluted, and we might look back to maps to see the lived environments we are in danger of loosing–and loosing sight of.  Viewing old maps like that in Moll’s Atlas after reviewing the above data visualizations and overlays is chastening and ethical, in ways, something like returning to a site of meditation on a relation to a world we have lost, and perhaps a way to turn back the tide of inevitability that informs our relation to the mapping of algal blooms.  Whether we can restore balance to our world may seem another story, assembling a coherent map of toxic blooms of algae that recur around the world, we can map its distance to the world we knew, and ask what sort of balance lies in our own.

Straits of Florida 1720

But it is the “other world” of blooms of green algae that the run-off of industrial agriculture appears to have bequeathed that is the world that seems, for the moment, far more likely to be left with us.  Without mapping the growth of such recurrent aglal blooms, and tracking their mechanisms of causation and varying intensity–feared only to increase in an age of global warming–the other world will become our own.

3 Comments

Filed under algae blooms, coastlines, Environmental Pollution, Florida coast, global warming, Great Lakes