Category Archives: climate change

Saturated Shores in Southeastern Texas

There is almost no trace of the human, or of the extreme overurbanization of the Texas coast, in most of the maps that were created of the extreme flooding and intense winter rains that hit Galveston and Houston TX with the windfall of Hurricane Harvey.  While maps serve to orient humans to the world–and orient us to human processes and events in a “human world,” as J.B. Harley and David Woodward put it.

The relentless logic of data visualizations based on and deriving primarily from remote sensing are striking for rendering less of a human world than the threat of allegedly “natural” processes to that world.  Perhaps because of the recent season of extreme weather we have experienced, weather maps may be among the most widely consulted visualizations in our over-mediated world, if they were already widely viewed as the essential forms of orientation.  But the pointillist logic of weather maps may fail to orient us well to extreme events as the hurricane that dumped a huge amount of water on overbuilt areas to include the human–or the human world–seem a tacit denial of the role of humans in the complex phenemona of global warming that have, with the warming waters of the Gulf of Mexico and ever-increasing ozone over much of the overbuilt southeastern Texas shore, created a perfect storm for their arrival.

This failure to include this role haunts the limited content of the weather map; including the role of humans in maps of extreme weather events indeed remains among the most important challenges of weather maps and data visualization, with the human experience of the disasters we still call natural.

 

1.  For weather maps are also among the most misleading points to orient oneself to global warming and climate change, as they privilege the individual moment, removed from a broader context of long-term change or the human alteration of landscape.  They provide endless fascination by synthesizing an encapsulated view of weather conditions, but also  suggest a confounding form of media to orient audiences to long-term change or to the cascading relations of the complex phenomenon of climate change and our relation to the environment, as they privilege a moment in isolation from any broader context, and a sense of nature removed from either landscape modification or human intervention in the environment, in an area were atmospheric warming has shifted sea-surface temperatures.  The effects on the coast is presented in data visualizations that trace the hurricane’s “impact” as if its arrival were quite isolated from external events, and from the effects of human habitations on the coast.  The image of extreme flooding is recorded as a layer atop a map, removing the catastrophic effects of the flooding from the overpaved land of the megacities of southeastern Texas, and the rapid paving over of local landcover of its shores.

 

90-7.

 

Such visualizations preserve a clear line between land and sea, but treat the arrival of the rains on land as isolated from the Consuming such events of global warming in color-spectrum maps.  The data of rainfall translate data into somewhat goofy designs represents a deep alienation from the environment, distancing viewers in dangerous ways from the very complexity of global warming that Gulf coast states encountered.

Such data visualizations seem dangerously removed notion of how we have changed our own environment, by describing a notion of “nature” that is immediately legible, as if it were removed from any human trace or of the impact of modification of the land, and by imaging events in isolation from one another–often showing a background in terrain view as if it has no relation to the events that the map describes.  Although weather maps and AccuWeather forecasts are sources of continual fascination, and indeed orientation, they are are also among the most confounding media to orient viewers to the world’s rapidly changing climate–and perhaps among the most compromised.  For they imply a remove of the viewer from space-and from the man-made nature of the environment or the effects of human activity form the weather systems whose changes we increasingly register.  By reifying weather data as a record of an actuality removed from human presence at one place in time, they present a status quo which it is necessary to try to peel off layers, and excavate a deeper dynamic, and indeed excavate the effects of human presence in the landscape or geography that is shown in the map.  We are drawn to tracking and interpret visualizations of data from satellite feeds in such weather maps–or by what is known as “remote sensing,” placed at an increased remove from the human habitation of a region, and indeed in a dangerously disembodied manner.

Visualizations resulting from remote observation demand taken as a starting point to be related to from the human remaking of a region’s landscape that has often increasingly left many sites increasingly vulnerable to climate change.  But the abstract rendering of their data in isolation from a global picture–or on the ground knowledge of place–may render them quite critically incomplete.  The remove of such maps may even suggest a deep sense of alienation form the environment, so removed is the content of the data visualization form human presence, and perhaps from any sense of the ability to change weather-related events, or perceive the devastating nature of their effects on human inhabitants:   their stories are about weather, removed form human lives, as they create realities that gain their own identity in images, separate from a man-made world, at a time when weather increasingly intersects with and is changed by human presence.  While throwing into relief the areas hit by flooding near to the southeastern Texas shore at multiple scales based on highly accurate geospatial data, much of which is able to be put to useful humanitarian uses–

 

Harvey flooding_1.jpgDartmouth Flood Observatory/University of Colorado at Boulder, August 29. 2017

 

1504094467hurricane-harvey-flood-map.gifMaps of the World

 

–the reduction of floods to data points creates a distorted image of space renders their occurrence distant from the perspective of folks on the ground, and places their content at a considerable remove from the complex causality of a warming Gulf of Mexico, or the problems of flood drainage by which Galveston and Houston were beset.  Indeed, the multiple images of that report rainfall as an overlay in a rainbow spectrum, at a remove from the reasons for Houston’s vulnerability to flooding and the limits the region faces of flood control, in broadcast Accuweather images of total rainfall in inches advance a metric that conceals the cognitive remove from the dangers of flooding, ora human relation to the landscape that the hurricane so catastrophically affected.  Can we peel under the layers of the data visualization, and create better images that appreciate the human level on which the landscape stands to be devastated by hurricane rains, as much as tracking the intensity of the growth of rainfall over time?

 

90-5.jpegAccuWeather, Rainfall levels by Thursday

90AccuWeather, Friday to Monday

 

Such layers of green, meant to suggest the intensity of rainfall that fell over land, reveal the concentration of water in areas closes to the Gulf of Mexico.  Even the most precise geographical records of the dangers of flooding in the floodplain of southeastern Texas with little reference to the historical modification of the region by inhabitants–

 

Harvey flooding_1Dartmouth Flood Observatory at University of Colorado, Boulder/August 29, 2017

 

–and conceal the extent to which the landscape’s limited ground cover permeability has left the region far more susceptible to flooding, and elevated the risks of the emergency.  The problem of reading any signs of human presence into these “images” of precipitation provoke problems of disentangling remote sensing data from knowledge of the region’s recent urban growth and the consequent shift in local landcover.

The perspective of our relation to these events is often as fleeting and as existential as they flood us with data, which we viewers have little perspective or tools to process fully.  The onrush of recent remote sensing maps batter us with an array of data, so much as to lead many to throw up their hands at their coherence.  Even as we are  still trying to calculate the intensity of damages in Puerto Rico–where electricity is so slowly returning that even even after four months, almost a third of its 1.5 million electricity customers still lack power–and the cost of fires in southern California.  We look at maps, hoping to piece together evidence of extensive collateral damage of global warming.  Yet we’ve still to come to terms with the intensity of rainstorms that hit southeastern Texas–deluging the coast with rainfall surpassing the standard meteorological chromatic scale that so misleadingly seems to offer a transparent record of the catastrophe, but omits and masks the experiences of people on the ground, digesting swaths of remotely sensed data that take the place of their perception and experience, and offering little critical perspective on the hurricane’s origin.

The rapidity with which rain challenged ground cover permeability provides both a challenge for mapping as a symptom of global warming and landscape modification:   the mapping of “natural” levels of rainfall blurs the pressing problem of how shifting landcover has created an impermeability to heightened rains, and indeed how the new patterns of habitation challenge the ability of the coast of the Gulf of Mexico to absorb the prospect of increased rain in the face of decreasing groundcover permeability, and the extreme modification of the coastline that increasingly impeded run-off to the Gulf.

 

2.  Across much of southeastern Texas, a region whose growth was fed by the hopes of employment in extractive industries, real estate demand and over-paving have unfortunately intersected with extreme weather in southeastern Texas in ways which dat visualizations have had trouble exposing, but which raise a curtain on the coming crises of a failure of ability to accommodate increased levels of rainfall  If the lack of precedent for the intense rainfall in Galveston Bay generated debate about introducing a new color that went beyond the rainbow scale employed in weather charts, what seemed a problem of the cartographic color-spectrum suggested a problem of governability and indeed government response to extreme weather conditions.  How to register the dangers of rainfall that goes of the scale or standards of measurement?

One must consider how to orient viewers to the intensity of consequent flooding, and to its consequences and better prepare ourselves for the arrival of deluging rains without falling back on the over-freighted metaphor of rains of biblical scope.  How many more hurricanes of increasing intensity can continue to pound the shores, by whipping precipitation from increasingly warming waters and humid air?  The cumulative pounding of tropical cyclones in the Gulf stands to create a significantly larger proportion of lands lying underwater–temporarily submerged lands–with radically reduced possibilities of drainage, as hurricanes carry increased amounts of evaporated water from the humid air of the warming gulf across its increasingly overbuilt shores. in ways that have changed how the many tropical cyclones that have crossed the land-sea threshold since NOAA began tracking their transit (in 1851) poses a new threat to the southeastern coast of Texas, and will force us to map the shifting relation between land and water not only in terms of the arrival of hurricanes, or cyclonic storms–

 

 

–but the ability of an increasingly overbuilt landscape to lie underwater as the quantity of the Gulf coast rainfall stands to grow, overwhelming the overbuilt nature of the coast.

Most maps that chart the arrival and impact of hurricanes seem a form of climate denial, as much as they account for climate change, locating the hurricanes as aggressive forces outside the climate, against a said backdrop of blue seas, as if they  are the disconnect.  Months after the hurricane season ended, the damage for hurricanes caused have hardly been assessed in what has been one of the most costly and greatest storm damage since 1980 in the United States,–including the year of Hurricane Katrina–we have only begun to sense the damage of extreme weather stands to bring to the national infrastructure.  The comparison to the costs of storm damage in previous years were not even close.

But distracted by the immediacy of data visualizations, and impressed by the urgency of the immediate, we risk being increasingly unable to synthesize the broader patterns of increased sea surface temperatures and hurricane generations, or the relations between extremely destructive weather events, overwhelmed by the excessive destruction of each, and distracted from raising questions about the extremely poor preparation of most overbuilt regions for their arrival, and indeed the extent to which regional over-building that did not take the possibility of extreme weather into account–paving large areas without adequate drainage structures or any areas of arable land–left inhabitants more vulnerable to intense rains.  For in expanding the image of the city without bounds, elasticity, or margins for sea-level rise, the increasingly brittle cityscapes of Galveston and much of the southeastern Texas shoreline were left incredibly unprepared for the arrival of hurricanes or intense rains.  Despite the buzz of an increased density of hurricanes to have hit the region,

 

1851_2013_mjrhurr2

 

the questions of how to absorb hurricanes of the future, and to absorb the increased probability of rainfall from hurricanes in the Gulf of Mexico and its shores, suggests questions of risk, danger, and preparation that we have no ability to map.  What, indeed, occurs, as hurricanes themselves destroy the very means of transmitting on the ground information and sensing weather, and we rely exclusively on remote sensing?

 

Destroyed satellite dishes after Hurricane Maria hit Humacao, Puerto Rico  REUTERS/Alvin Baez

 

 

To characterize or bracket these phenomena as “natural” is, of course, to overlook complex interaction between extreme weather patterns and our increasingly overbuilt environments that have both transformed the nature of the Southeastern Texas coast and have made the region both an area of huge economic growth over time, and have paved over much of the floodplain–as well as elevated the potential risks that are associated with coastal flooding in the Gulf Coast.  To be sure, any discussion of the Gulf of Mexico must begin from the increasingly unclear nature of much of our infrastructure across land and sea, evident in the range of pipelines of gas and oil that snake along a once more clearly defined shore charted by ProPublica in 2012, revealed the scope of the manmade environment that has both changed the relation of the coastal communities to the Gulf of Mexico, and has been such a huge spur to ground cover change.

The expansive armature of lines that snake from the region across the nation–

 

pipeline_line_mapProPublica, Pipeline Safety Tracker/Hazardous liquid pipelines are noted in red; gas in blue

 

-and whose tangle of oil pipelines that extend from the very site of Galveston to the Louisiana coast is almost unable to be defined as “offshore” save as a fiction, so highly constructed is much of the national waters in submerged lands in the Gulf of Mexico–

 

gulfofmexicopipelinesProPublica, Pipeline Safety Tracker/Hazardous liquid pipelines are noted in red

 

They indeed seem something of an extension of the land, and a redefinition of the shore, and reveal a huge investment of the offshore extractive industries that stand to change much of the risk that hurricanes pose to the region, as well as the complex relation of our energy industries to the warming seas.  Yet weather maps, ostensibly made for the public good, rarely reveal the overbuilt nature of these submerged lands or of the Gulf’s waters.

Despite the dangers that such an extensive network of hazardous liquid lines along the Gulf of Mexico, the confusion between mapping a defined line between land and water, and visualizing relations of extreme weather disturbances as hurricanes in the Gulf of Mexico and local infrastructure haunts the extremely thin nature of the sort of data visualizations that are generated about the dangers of hurricanes and their landfall in the region.  For all too often, they presume a stable land/sea divide, removed from the experience of inhabitants of the region and how we have remade the shore.

 

3.  How can we better integrate both a human perspective on weather changes, and the role of human-caused conditions in maps of extreme weather?  How can we do better by going beneath the data visualizations of record-breaking rainfall, to map the human impact of such storms?  How could we do better to chart the infrastructural stresses and the extent to which we are ill-prepared for such extreme weather systems whose impact multiplies because of the increased impermeability of the land, unable to absorb excessive rainfall, and beds of lakes and reservoirs that cannot accommodate increased accumulation of rainfall that  stand to become the new normal?  The current spate of news maps that provoke panic by visualizing the extremes of individual cases may only inspire a sort of data vis-induced ADD, distracting from infrastructural inadequacies to the effects of global warming–and leaving us at a loss to guarantee the best structures of governability and environmental readiness.

Indeed, the absence of accurately mapping the impact and relation between landcover, storm intensity, rainfall, flooding, and drainage abilities increases the dangers of lack of good governance.  There need not be any need for a reminder of how quickly inadequate mapping of coastal disasters turns into an emblem of bad governance.  There is the danger that, overwhelmed by the existential relation to each storm, we fail to put them together with one another; compelled to follow patterns of extreme weather, we risk being distracted from not only the costs but the human-generated nature of such shifts in seasons between extremes of hot and cold.  For as we focus on each event, we fail to integrate a more persuasive image of how rising temperatures stand to create an ever-shifting relation between water and land.

Provoked by the rhetoric of emergency, we may need to learn to distance ourselves better from the aerial views that synthesize intense precipitation, tally hurricane impacts, or snowfall levels, and view them less as individual “strikes” or events and better orient ourselves to a broader picture which put us in a less existential relation to extreme weather.

 

2017-four-us-hur-landfalls_3The Weather Channel

 

We surely need to establish distance to process syntheses of data in staggering aerial views on cloud swirl, intense precipitation, and snowfall, and work to peel back their striking colors and bright shades of rainbow spectra, to force ourselves to focus not only on their human costs, or their costs of human life, but their relation to a warming planet, and the role of extreme of weather in a rapidly changing global climate, as much as track the “direct strikes” of hurricanes of individual names, as if they were marauders of our shores:  their creation is as much tied to the changing nature of our shores and warming sea-surface temperatures, and in trying to create a striking visualization, we deprive ourselves from detecting broader patterns offering better purchase on weather changes.

 

direct-strikesThe Weather Channel

 

If patterns of weather maps epitomized by Accuweather forecast and projections suggest an exhilaratingly Apollonian view on global and regional weather patterns, they also  shift attention form a broader human perspective in quite deeply pernicious ways.  Such maps provided the only format for grasping the impact of what happened as the hurricane made landfall, but provided little sense of the scale of inundations that shifted, blurred and threatened the coast of the Gulf of Mexico.  They provide a format for viewing floods that are disjoined from victims, and seem to naturalize the quite unnatural occurrence of extreme weather systems.  Given the huge interest in grasping the transformation of Hurricane Harvey from a tropical storm to a Category Four hurricane, and the huge impact a spate of Category Four hurricanes have created in the Gulf of Mexico, it’s no surprise that the adequacy of the maps of Hurricane Harvey have been interrogated as hieroglyphs or runes of a huge weather change:  we sift through them for a human story which often left opaque behind bright neon overlays, whose intensity offer only an inkling of a personal perspective of the space or scale of their destruction on the ground:  while data maps provide a snapshot of the intensity of rain-levels or wind strength at specific sites, it is difficult if important to remember that their concentration on sites provide a limited picture of causation or complexity.

All too often, such maps fail to offer an adequately coherent image of disasters and their consequences, and indeed to parse the human contributions to their occurrence.  This post might be defined into multiple subsections.  The first actions suggest the problems of mapping hurricanes in the Gulf of Mexico in relation to flooding in data visualizations of the weather and the overbuilt region; the middle of the post turns to an earlier poetic model for considering the relation between land and sea that visualizations all too easily obscure, and the meaning that the poet Elizabeth Bishop found in viewing relations between land and sea in a printed map of the Atlantic; after returning to the question of the overbuilt shore compounds problems of visualizing the Texas coast, the final section, perhaps its most provocative, returns to Bishop’s reading of a map of the Atlantic coast.

What such new weather maps would look like is a huge concern.  Indeed, as we depend on weather maps to orient us to place ourselves in the inter-relations of climate change, sea-level, surface temperatures, and rain, whether maps cease to orient us to place, but when best constructed help to describe the changing texture of weather patterns in ways that can help familiarize us not only to weather conditions, but needed responses to climate change.  For  three months after the hurricanes of the Gulf of Mexico caused such destruction and panic on the ground, it is striking not only that few funds have arrived to cover costs of rebuilding or insurance claims, but the judgement or understanding of the chances for future flooding have almost left our radar–perhaps pushed rightly aside by the firestorms of northern and southern California, but in ways that troublingly seem to forget to assess or fail to assess the extent of floods and groundwater impermeability  along the Texas and Louisiana coast.  The problems that preparation for future coastal hurricanes off the Gulf of Mexico raise problems of hurricane control and disaster response that seem linked to problems of mapping their arrival–amd framing the response to the increasing rains that are dumped along the entire Gulf Coast.

 

 

Indeed, the chromatic foregrounding of place in such rainbow color ramps based on GPS obscure other maps.   Satellite data of rainfall are removed from local conditions, and serve to help erase complex relations between land and water or the experience of flooding on the ground–by suggesting a clear border between land and sea, and indeed mapping the Gulf of Mexico as a surface as if it were unrelated to the increased flooding around Houston, in maps prepared from satellite imagery, despite the uneasy echoes of anthropogenic causes for the arrival of ten hurricanes in ten weeks, in ways that suggest how warming waters contributed to the extreme inundation of the Gulf Coast.  Despite NOAA  predictions of a 45% likelihood of ‘above-normal’ activity for the 2017 Atlantic hurricane season, with, a 70% likelihood of storms that could transform into hurricanes, the images of inundated lands seem both apocalyptic and carefully removed from the anthropogenic changes either to the ocean or land that intensified their occurrence so dramatically on the ground.

 

Dartmouth Flood Observatory Flooding Harvey Dartmouth Flood Observatory

 

Harvey flooding_0.jpgDartmouth Flood Observatory/August 29, 2017

 

Is it possible to recuperate the loss of individual experience in such data maps, or at least acknowledge their limitations as records of the complexity of a changing climate and the consequences of more frequent storm surges and such inundations of rainfall?  As we seek better to understand the disaster relief efforts through real-time maps of effects of Hurricane Harvey as it moved inland from the Gulf of Mexico, shifting from Category 4 Hurricane from a tropical storm, we tried to grasp levels of rainfall that spun out of 115-mile-an-hour winds across southeastern Texas that damaged crops, flooded fields, ruined houses, and submerged cars, we scan stories in hope of clues to assess our position in relation to increasingly dangerous weather systems whose occurrence they may well forebode.  At a time of increased attention to extreme weather has long developed, the gross negligence of climate change denial is increasingly evident:  it recalls the earlier denial of any relation between hurricanes and climate change, when increased hurricanes were cast as “the cycle of nature,” rather than as consequences whose effects have in fact been broadly intensified by human activity.

Current attempts to map the toll of record-smashing hurricanes focused almost exclusively on point-based data view rainstorms largely as land-based records; even as they intend to monitor the effects of Harvey’s landfall by microwave censors, they risk seeming to isolate real-time rainfall levels from the mechanics warmer air and sea-surface temperatures which result from human-caused global warming, not relating increased storm surges or inundations to achanges in coastal environments or climate change.  To render such changes as natural–or only land-based–is irresponsible in an age of reckless levels of climate denial.  Indeed, faced by the proliferation of data visualizations, part of the journalistic difficulty or quandary is to integrate humanistic or individual perspectives on the arrival of storms, rendered in stark colors in the increasingly curtailed ecosystems of newsrooms which seek simplified visualizations of satellite data on the disaster, which fail to note the human contributions to the travails that are often reserved for photographs, which increasingly afford opportunities of disaster tourism in the news, emphasizing the spectator’s position before disasters, by images that underscore the difficulties in processing or interpreting the proliferation of data from MODIS satellite feeds:  we can show the ability to measure the arrival of torrential rains, but in offering few legends, save the date and scale, but offering few keys o interpret the scale of the disaster.

The looming portent of human-made climate change, however, underlies the poor predictions that NOAA offered of perhaps 2-4 major hurricanes this Spring, and the lack of a new director for NOAA–on which local and state agencies depend to monitor the nations shores and fisheries–suggested the, from June to September, which left states on their own to make decisions and plan for disaster mitigation programs and better flood maps.  (The danger of appointing a newly nominated director, Barry Myers, who is a strong supporter of the privitization of weather maps and an executive at the private Accuweather mapping service, suggests the difficulty of determining the public-private divide in an era of neoliberalism, and a free market of weather maps that were once seen as central to national security and standards of safety.)   There are two hidden scales on which we read these opaque maps of global warming and globalization and local inundation are triply frustrating.   For all the precision and data richness of such point-maps of largely land-based rainfall, local temperature, or flooding, the biases of such instantaneous measurements seem to fit our current governing atmosphere of climate change denial, and dangerous in erasing how such storms are informed by long-term consequences of man-made climate change.  (As the mapping tools of coastal weather seem destined to change, what sort of change in direction for NOAA coastal maps do we want:  the appointment suggests the terrifying possibility of a return to the Bush-era proposal nominee Myers supported that prohibiting the agency from producing any maps already available in the private sector then threatened federal weather lines to go dark–lest they literally compete with ad-supported websites private providers–and shift federal information offline?)

For making moves toward the future readability of weather maps may well be at stake in critically important ways.  The 2005 proposal that Myers backed would have eliminated the National Weather Service, even while exempting those forecasts needed to preserve “life and property,” would in essence have returned the weather services to a pre-internet era, even as the most active hurricane season including a record breaking fifteen hurricanes and twenty-eight storms began in the gulf coast, including the infamous hurricane Katrina.  The proposed bill would have prevented NOAA from posting open data, and not only readily available to researchers and policymakers, in ad-free formats, free of popup screens, but allow them to make their own maps on the fly–ending good practices of posting climate data would work quite dangersously to prevent development of tools of data visualization outside commercial models of rendering storms and hurricanes as if environmentally isolated.

 

2005-tracks-update.jpg

direct-strikes

 

A deeper problem of providing such limited weather maps of tropical storms may be the subtexts about the relation of human causes to weather they convey, and the absence of a greater narrative of the transformation of a global ecology or of the ecology of the Gulf Coast.  The curtailed images of “nature” they present by symbolizing rains, winds, floods, or submerged regions in appealing hues as natural–raise questions of the odd simplicity of the absent storylines:  cheery colors erase or bracket complex questions of climate change, the human contribution to extreme weather events, or the human experience of suffering on the ground:  Rita, Cindy, Katrina, Dennis, and Wilma seem not part of the environment, epiphenomenal interlopers moving across a static deep blue sea, in an apparent dumbing down of the mechanics of hurricane or storm formation in a rainbow spectrum removed from a human-made environment.

Continue reading

Leave a comment

Filed under climate change, data visualization, ecological disasters, hurricanes, Remote Sensing

Droughtshaming!

Will the hashtag #droughtshaming change the public water consumption levels in California?  or is it only a manifestation of an all too long-submerged consciousness of evident property differences across most of Southern California–a space where ever-conspicuous consumption has long been made manifest in keeping yard lawns perpetually green?   and what of the Wet Prince of Bel Air, who has used an incredible 11.8 million gallons yearly during the drought to maintain the green yards on their southern California estate?

Almost as powerful a portmanteau as “Mansplaining,” the compound currently trending on Twitter presents both a righteous form of indignation, improvising map via social media that suggests our changing sense of our environment may open new arenas of public speech. The creation of a set of zoomable interactive maps from the New York Times of projected water-cuts and current water-usage across the state’s water districts have been recently mapped an uneven balance between water districts statewide, in ways that not only call clear attention to sharp discrepancies of water-usage across the state, not only between how urban and agricultural regions might be affected by mandated reductions in public water usage–

 

central valley water cuts

 

but what might be called the selective yard-drenching in specific regions of the south-lands, according to the same interactive data visualization–

 

 
drenching years in 2014-15 in LA

 

and the notable persistent over-use of water in wealthier areas of LA’s per diem consumption of water this past winter–

 

LA Consumption habits per diem Winter 2015

 

The map above offers an approximate reflection of a topography of disposable income, described b UCLA’s California Center for Sustainable Communities.  The Center quite recently found not only that “wealthy used more than three times the rate of non-wealthy people,” but wealth was the most conspicuous correlation and predictor of water use–and watering lawns, as we have long known, an increasing sign of conspicuous consumption even in an age of drought.

Is this a decision to spend more on water, or is it, as seems more likely, the conspicuous expenditure of water on yards, perhaps fueled by the cost of letting all that greenspace go dry, or the actual dangers of fire hazards that letting lawns go dry might create?  The oft-cited datum that Beverly Hills residents daily “used” some 286 gallons of water during September 2014, at the same time northern and coastal San Diego County consumed some 584 gallons in the Santa Fe Irrigation District, contrast sharply to Compton residents served by the LA Department of Water and Power who restricted themselves to 93 gallons a day and Angelinos in East LA some 48 gallons.

But it bears repeating at a time when Governor Brown wants to mandate across the board 20% reductions in water use as a means of increasing efficiency, if only to ask what some of the best manners of mandating reductions are.  By dividing water-usage by census tract, clear patterns in LA County emerge, that make it something of an epicenter, to mix geographic metaphors, with the recent rash of tweets about excessively selfish individual water use at Beverly Hills mansions that include, in some cases, spas and vineyards as well as expansive still-green lawns:

 

Water:Income LA

 

But rather than only call attention to the sociological correlation between water-waste and wealth, this post wants to ask questions about the ethics of the spontaneous sorts of mapping of water-waste that have proliferated in Angelino social media, as if to sharpen critiques of the lack of social responsibility of the wealthy in a city of sharp social divides, in ways that remote sensing is promising new results in a far more detailed manner for select Los Angeles neighborhoods in order to drill more deeply into the extent of watering of lawns, flowers, and trees that underlies such datasets.  But human-scale photographs posted on social media via Twitter has been an initial means to assemble immediately available instances of water over-use.

The spontaneous mapping of such inequalities on social-media is a sort of crowd-sourced shaming to redress unspoken social inequities, with offending addresses lain out on twitterfeeds for the public to see, lest anyone be confused about who has the public interest at heart, and who is most concerned with keeping the brown grass at bay, even without looking at the bigger picture, in something approximating collective rage against the overwatered large yard as an exercise of collective shaming, which has gained a real edge given that the state is poised to levy hefty fines on identified water wasters since mid-2014.  It’s triggered a geographical awareness of the steep inequities of water use and comes close to socially sanctioned class-consciousness–

 

droughtshaming

 

–and its effects on the lived landscape ofBeverly Hills lawns:

 

 

Streisanf

Such selective outing of levels of outrageously cartoonish disproportionate use of water utilities may run the ethical risk of crowd-sourced surveillance, where aerial photography approaches NSA-style snooping via overhead drones–the regional sustainability manager for Sacramento’s Utilities Department was said to be “pleasantly surprised” at such snitching last summer, when #drougthshaming took off on the Twittersphere.  But the current spate of tweeted outrage expressed on social media has also become a venue for expressing suppressed sentiments of a class struggle, very slightly veiling disgust at profligate over-watering lawns indulged by those running automatic sprinklers as if they were draining regional aquifers single-handedly, with little heed for state-wide water shortages, brought to the front in signs posted in public parks that remind users that “Brown is the New Green.”

 

Brown New GreenAaron Mendelson/KQED

 

Tweets are most famous for unleashing wrath against the privileged who are out of touch with the reality of water-needs–

 

green lawns

OhMo

Kim

–at the fact that rhythms of daily consumption patterns are so drastically different across a single city by degrees of multipliers.  And is it even a surprise that the mansions of three and a half acres we’ve become used to viewing and vicariously living on Reality TV have been most notoriously cautioned by local Municipal Water Districts to cut the their water use drastically?  (Both Barbara Streisand and Kim Kardashian have publicly agreed to curtail their water use–“Kim takes this drought seriously;” said a representative; “she has no problem letting her grass go brown.”)

The targeted social criticism is by no means limited to the super-wealthy:

Sprinklers Running since <7AM

The steep social discrepancies in water-use have thrown into relief the divided economic structures of the city that we’ve long known about from the American Community Survey–Orange County and Palos Verde residents use respectively thee and two times the state-wide per capita daily consumption rates in February 2015–but now suggest that water wastage among the wealthy is actually undermining the public good in a clearly mappable manner.  We have long seen larger yards in specific neighborhoods, but watering practices seem to have grown out-of-hand in expropriating the public resource with obliviousness, even while we blame “nature” for a drought that is increasingly evident is indeed largely man-made, and even may as due to human nature as climate change.

LA in detail

 

During the summer, such deep discrepancies of daily water consumption are of course placed into even further relief in  data visualizations of local levels of consumption, reflecting an apparent rationalization of increased water usage as well as the readiness of covering rising water costs, as lower income families responded more rationally to higher water costs.

 

LA summer of 2014

 

To be sure, Northern California has done fairly well to reduce consumption from the Spring 2013–

 

usage change nocal

 

But it is also true that the aerial photographs of the ambient effects of income inequality that sent Google Earth images viral after being posted on persquaremile reveal the grey v. green dichotomy to be by no means limited to the southland–

 

oak:piedmont

 

Such a democratic appropriation of Google Earth may have paved the way for the tweeting of extravagant consumption of water that has become all too evident in some of the larger Beverly Hill yards, that can be linked to specific addresses.

The calls for greater restraint in water usage since March 2013 is far from clear in much of the greater Los Angeles area, as posters on social media have not only realized, but realized that they were able to publicly point out.

 

SoCal 2013-15

Both a more equitable distribution of water access and a rethinking of such deeply-lying assumptions of personal prerogative to wasting water deserve attention as Californians try to curb continued water use in a responsible manner.  We will have to tilt swords with some of the deeper espousers of a free market of deregulated water consumption, but at this point, for better or worse, deregulation has its back snugly against the wall.

And despite the reluctance of water utilities to identify wasters of boggling amounts of public water–as the Los Angeles homeowner known only as Wet Prince of Bel Air, a name won for pumping an incredible annual 11.8 million gallons during the recent drought to his estate.  The recent news that 100 residents of such wealthy Los Angeles neighborhoods as Westside have been pumping millions of gallons of water apiece has called for more effective means of recourse than twitter revenge, as such outing bears little fruit; in the light of recently passed laws against over-use of water, remote sensing technologies have been used by journalists at Reveal who are eager to even up the score:  taking advantage of   new fines assessed against excessive water use, the mapping through Digital Globe and others provides a deeper survey of water use than would be released by Los Angeles’ compliant Department of Water & Power.  Indeed, the Center for Investigate Reporting has begun to “out” high water-users by remote sensing–and publishing the maps!

Given the limits of Twitter photographs to document public instances of water overuse, the expansive indulgence of overwatering in such somewhat reclusive sites as Bel Air, perhaps inspired by droughtshaming, have used remote sensing provides a means to assess an accurate record of water-use to map the high use of water to estates to out individual culprits of over-watering, tracking the greening of their gardens by Google Earth and Digital Globe and an assessment of exactly how healthy those yards are.

BelAirOverview20160909.jpg

Using remote sensing of the health of plants–by means of a form of remote sensing developed to detect plant health common in agricultural assessment– the Normalized Vegetation Index (NDVI) helps to pinpoint individual culprits of water over-use might be identified whose identity would be otherwise kept hidden by the county, by measuring the living vegetation that has continued its ability to absorb visible light wavelengths of light, the very ones used in photosynthesis, to create a unique dataset of those with the largest living yards in the municipality.

For the primary culprits are be identified by remote sensing of living green vegetation that remain on such sites as the heavily wooded estate that is maintained by move producer Peter Guber, part-owner of the Golden State Warriors, who indulges his wooded estate with over 2.8 million gallons of water each year, while pushing the Warriors to take up a home in San Francisco to boost their revenues.  The owner of the 42-room French-style chateau from TV’s “The Beverly Hillbillies,” former Univision CEO Jerrold Perenchio, who uses up to 6.1 million gallons each year to water his plants and gardens.  The owner of the 28,000-square-foot “Bellagio House” whose floral gardens suck up over 4.6 million gallons per year.  The technology used of combining infrared and near-infrared light by the Normalized Vegetation Index (NDVI).    The NDVI has become sufficiently refined from satellite or drone remote observation to parse and better describe water use and its impact in plants with a great precision, as is evident in the MODIS satellite maps of groundwater in the United States, and to present a highly sensitive reading of vegetation health at precise moments in time, and indeed within given parameters of health, by mapping the presence of water in plants–as one would map the presence of water in the ground.

NDVI.jpg

By means of a similar remote sensing with NDVI, one can effectively map lots’ local water saturation at a scale to detect individually owned gardens such as those that Guber indulges on Lausanne Road in Bel Air–outlined below , with relative vegetative health shown in red colors, showing the highest range of the NDVI–as an accurate way to assess the extent of living vegetation, using infrared and near-infrared light to measure the local health of vegetation with amazing sensitivity, much as is familiar from global maps–but is only recently possible at such low scale thanks to Digital Globe–in ways that can not only identify individual culprits of water over-use, but presumably take them to task.

Guber's estat.png

–or the Casa Encantada owned by Garry Winnick–

Casa Encantada.png

For unlike the yellowed out areas of most of even the region of Bel Air, the bright red expanses suggest an odd over-nourishment of gardens even in a time of drought that indeed seems quite newsworthy, and is perhaps able to be viewed by Digital Globe alone.

Casa Encantada trees.png

–and can also be mapped, if with less clear-cut results, by soil moisture:

Soil Moisture.png

While such remote sensing from satellites had been confined to national regions at specific times of year,

600px-ndvi_062003

600px-ndvi_102003

–or used to map global differences in plant health–

600px-Globalndvi_tmo_200711_lrg.jpg

–the local assessment of those who over-indulge in caring for their lawns and flowers is both something close to surveillance and perhaps a form of surveillance that recent laws about water use have sanctioned in California during our current drought.

The odd triangles and spots of green that remain in a drying out landscape in which most of the rest of us live (spot the non-arboreal light green track in the tan landscape shown below?) reveal the levels of water waste which demand to be curtailed, and are emblematic of the golf courses and overwatered farms that we’ve just begun to take stock.

FullSizeRender-11

1 Comment

Filed under Bel Air, California drought, climate change, mapping drought, Remote Sensing

Arctic Circles

On our annual northward migration to Ottawa this December, we gathered around the unused fireplace in an unheated living room during the warmest Canadian Christmas in personal experience–as well as in the public record for Atlantic Canada, where local records for rainfall have surpassed all earlier recorded years.  Perhaps because of this, discussion turned to ownership of the North Pole for the first time for some time, as what was formerly a featureless area of arctic ice has become, as a receding polar ice-sheet exposes possible sites of petroleum mining, to become an area of renewed land grabs and claims of territoriality, as their value for nations is primarily understood in a global market of energy prospecting.  The story of the new mapping of territorial claims around the arctic ice cap goes back decades, to the exploration of offshore polar drilling, but the exposure of land raises new questions for mapping because boundaries of polar sovereignty are contested, even as oil companies have speculated by modeling sites of future exploration for petroleum deposits.

Although one assumption circulated that the place was Canadian by birthright—birthright to the Arctic?–since it is so central to national mythistory.  But there’s as much validity for its claims as the more strident claim the explorer Artur Chilingarov made to justify his planting of a Russian tricolor in the murky ocean bed 2.5 miles below the North Pole, during the 2007 polar expedition of the Mir submarine, with the blunt declaration that “The Arctic has always been Russian.”  Canadian PM Steven Harper did not hesitate a bit before decrying these claims to territoriality, warning his nation of the danger of Russian plans for incursions into the arctic in his tour of Canada’s North, thumping his chest and professing ongoing vigilance against Russia’s “imperial” arctic “imperial” as a national affront in addressing troops participating in military maneuvers off Baffin island as recently as in 2014.

Harper’s speech might have recalled the first proposal to carve pie-shaped regions in a sectorization of the North Pole first made by the early twentieth-century Canadian senator, the honorable Pascal Poirier, when he full-throatedly proposed to stake Canada’s sovereign claims to land “right up to the pole” and transform what had been a terra nullius into an image of objective territory seemed once again at stake.  Poirier claimed jurisdictional contiguity in declaring “possession of all lands and islands situated in the north of the Dominion.”  Poirier’s project of sectorizing the frozen arctic sea and its islands, first launched shortly after Peary’s polar expedition, has regained its relevance in an age of global warming, arctic melting and climate change.  But the reaction to the expanding Arctic Ocean in a language of access to a market of commodities has inflected and infected his discussion of the rights of territoriality, in ways that have obscured the deeper collective problems and dilemmas that the eventuality of global warming–and arctic melting–broadly pose.

 

Arctic Teritorial ClaimsEncyclopedia Brittanica

 

The question of exactly where the arctic lies, and how it can be bounded within a territory, or, one supposes, how such an economically beneficial “good” that was part of how parts of the north pole might get away from Canada, has its roots in global warming–rather than in conquest.  The dramatically rapid shrinkage of ice in the Arctic Sea has raised newly pressing issues of sovereignty; the widespread melting of arctic ice has made questions of the exploitation of its natural resources and potential routes of trade has made questions of the ownership of the Arctic ocean–the mapping of the territorial rights to the seas–increasingly pressing, as some 14 million square kilometers of Arctic Ocean have emerged not only as open for exploration, but as covering what has been estimated as 13% or more of total reserves of oil remaining to be discovered world wide.

 

20141220_IRM937 The Economist

While it seemed unrelated to the ice melting from nearby roofs, or large puddles on the streets of Ottawa, conflicting and contested territorial claims that have recolored most maps of the Arctic so that its sectors recall the geopolitical boardgame RISK, that wonderful material artifact of the late Cold War.  Rather than map the icy topography of the region as a suitably frosty blue, as Rand McNally would long have it, we now see contested sectors of the polar regions whose borderlands lie along the Lomonosov Ridge (which runs across the true pole itself).  The division of the pole so that it looks like post-war Berlin is an inevitable outcome of the fact that the arctic is warming at twice the rate of the rest of the planet, resulting in the opening of an area that was for so long rarely mapped, and almost always colored white with shades of picturesque light blue to suggest its iciness.

The lands newly revealed in the northern climes have however led territorial claims of sovereignty to be staked by a four-color scheme of mapping.  The uncovering of arctic lands–in addition to new technologies for underwater oil extraction and sensing–have complicated the existing maps of ocean waters premised upon expanding existing territorial waters an additional 278 kilometers beyond what can be proven to be an extension of a landmasses’ continental shelf–expanding since 1984 the rights to Arctic waters of the United States, Denmark, and Canada, according to consent to the United Nation’s Law of the Sea Convention (UNICLOS) which sought to stabilize on scientific grounds competing claims to arctic sovereignty.

 

 

Arctic Boudnary Disputes

 

The issues have grown in complex ways as the melting of Arctic ice has so dramatically expanded in recent years, exposing new lands to territorial claims that can be newly staked on a map that unfortunately seems more and more to resemble the surface of a board games.  Even more than revealing areas that were historically not clearly mapped for centuries, the melting of the polar cap’s ice in the early twenty-first century has precipitated access to the untapped oil and gas reserves—one eight of global supplies—and the attendant promise of economic gains.  Due to the extreme rapidity with which polar temperatures have recently risen in particular, the promises of economic extraction have given new urgency to mapping the poles and the ownership of what holes will be drilled there for oil exploration:  instead of being open to definition by the allegedly benevolent forces of the free market, the carving up of the arctic territories and disputes over who “owns” the North Pole are the nature follow-through of a calculus of national interests.  The recent opening up of new possibilities of cross-arctic trade that didn’t involve harnessed Alaskan Huskies drawing dog sleds.  But the decline in the ice-cover of the arctic, as it was measured several years ago, already by 2011 had opened trade routes like the Northwest Passage that were long figures of explorers’ spatial imaginaries, but are all of a sudden being redrawn on maps that raise prospects of new commercial routes.   New regions assume names long considered but the figments of the overly active imaginations of early modern European arctic explorers and navigators in search of the discovery of sea routes to reach the Far East.

 

20120616_SRM980The Melting North,” Economist

 

On the one hand, these maps are the end-product of the merchant-marine wish-fulfillment of the eighteenth-century wishful mapping of the French Admiral Bartholomew de Fonte, whose maps promised that he had personally discovered several possible courses of overcoming a trade-deficit caused by British domination of the Atlantic waters, allowing easy access to the South Seas.  The imagination of such routes proliferated in a set of hopeful geographies of trade which weren’t there in the late eighteenth century, of which de Fonte’s General Map of the Discoveries is an elegant mixture of fact and fiction, and imagined polar nautical expeditions of a fairly creative sort, presenting illusory open pathways as new discoveries to an audience easily persuaded by mapping pathways ocean travel, even if impassable, and eager to expand opportunities for trade by staking early areas of nautical sovereignty to promise the potential navigational itineraries from Hudson Bay or across the Tartarian nation of the polar pygmies:

 

arctic1772-full-1

Open-ended geographies of land-masses were given greater credibility by the dotted lines of nautical itineraries from a West Sea above California to Kamchatka, a peninsula now best-known to practiced players of the board-game RISK:

0078em

 

As well as imagine the increase potential shipping routes that can speed existing pathways of globalization, in fact, the meteorological phenomenon of global warming has also brought a global swarming to annex parts of the pole in confrontational strategies reminiscent of the Cold War that tear a page out of the maps, which give a similar prominence to Kamchatka, of the board game ‘RISK!’  Will their growth lead to the naming of regions that we might be tempted to codify in a similarly creatively improvised manner–even though the polar cap was not itself ever included in the imaginative maps made for successive iterations of the popular game of global domination made for generations of American boys.

 

 

pic324841 RISK (1968)  

1 living room, dining room, kitchen IMG_1319 Risk!, undated  

risk-1 Risk–current gameboard

Will future editions expand to include the poles as well, before they melt in entirety, as the ways that they become contested among countries percolate in the popular imagination?

We must await to see what future shorelines codified in the special ‘Global Warming Edition’ of RISK–in addition to those many already in existence in the gaming marketplace. If the game boards suggest Christmas activities of time past, the ongoing present-day game of polar domination seems to be leading to an interesting combination of piece-moving and remapping with less coordinated actions on the parts of its players.  We saw it first with Russia’s sending the Mir up to the North, which precipitated how Norway claimed territoriality of a sizable chunk of Arctic waters around the island of Svalbard; then Denmark on December 15 restocked its own claims, no doubt with a bit of jealousy for Norwegian and Swedish oil drilling, to controlling some 900,000 square kilometers of arctic ocean north of Greenland, arguing that they in fact belong to its sovereign territories, and that geology reveals the roots of the so-called Lomonosov Ridge itself as an appendage of Greenland–itself a semi-autonomous region of Denmark, upping up the ante its claims to the pole.

While the Russians were happy to know that their flag was strategically but not so prominently placed deep, deep underwater in the seabed below the poles, the problem of defining the territorial waters of the fast-melting poles upped the ante for increasing cartographical creativity.   Recognized limits of 200 nautical miles defines the territorial waters where economic claims can be made, but the melting of much of the Arctic Ocean lays outside the claims of Canada (although it, too, hopes to stake sovereignty to a considerable part of the polar continental shelf), by extending sovereign claims northward from current jurisdictional limits to divide the mineral wealth.  Were the Lomosonov Ridge–which isn’t moving, and lies above Greenland–to become a new frontier of the Russian state, Russian territory would come to include the pole itself.

 

 

LOMOSONOV RIDGE.pngBill Rankin/National Geographic

 

The actual lines of territorial division aside, the diversity of names of the single region indicate the competing claims of sovereignty that exist, as if a historical palimpsest, within an actual map of the polar region:  from the Amundsen Basin lies beside the Makarov Basin, the Yermak Plateau beside the Lena Trough and Barents Plain, suggesting the multiple claims of naming and possession as one approached the North Pole, without even mentioning Franz Josef Land.

 

 

LOMOSONOV RIDGE

amundsen basin dotted lines of contestation?.png

Contestation of the Pole

While the free market isn’t able to create an exactly equanimous or impartial division of land-claims, the new levels of Denmark’s irrational exuberance over mineral wealth led the country to advance new claims for owning the north pole, and oil-rich Norway eager to assert its rights to at least a sixth of the polar cap, given its continued hold on the definition of the northern lands.  The increasing claims on proprietary rights of polar ownership among nations has lead international bodies such as the United Nations Conventions on the Law of the Seas (UNICLOS) to hope to codify the area peaceably by shared legal accords–presumably before the ice-cover all melts.

The maps of speculation of the “Arctic Land Grab” is economically driven and suggests an extension of offshore speculation for oil and gas that has long roots, but which never imagined that these claims would be able to be so readily concretized in terms of a territorial map as the melting of the ice cap now suggests.  But as technical maps of prospecting are converted into maps with explicit territorial claims, planned or lain lines of pipe are erased, and the regions newly incorporated as sites of territoriality in ways that earlier cartographers would never have ventured.

rankin polar maps

rankin polar mapsrankin polar maps

Bill Rankin/Guerilla Cartography

The existence of laid or planned pipeline by which to pump and stream oil across much of Upper Canada from the Chukchi Sea, North Slope, and MacKenzie Delta have long been planned by Canadians.  Similarly, the Russian government, echoing earlier claims of Russian stars to straddle the European and Asian continents, have claimed the underwater Lomosonov Ridge as part of the country’s continental shelf, even if it lies outside the offshore Exclusive Economic Zone, as is permitted by UNICLOS–so long as the edge of the shelf is defined.

Canada has taken the liberty to remap its own territory this April, in ways that seem to up the ante in claims to arctic sovereignty.  In updating the existing map of 2006 to make it appear more ice exists in the Arctic than it had in the past,  the Atlas of Canada Reference Map seems to augment its own sovereign claims to a region in ways clothed in objectivity:  even as arctic ice-cover undeniably rapidly melts in a decades-long trend, the ice-cover in the region is greatly expanded in this map, in comparison to that of 2006, and the northern parts of Canada are given a polemic prominence in subtle ways by the use of a Lambert conformal conic projection and a greatly expanded use of aboriginal toponymy to identify lands that even belong to different sovereignty–as Greenland, here Kalaalit Nunaat–in terms that link them to indigenous Canadians, and by extension to the nation.  Both tools of mapping appear to naturalize Canadian claims to the Arctic in a not so subtle fashion.  Moreover, the map stakes out exclusive economic zones around Arctic regions:  even as the Arctic rapidly melts, for example, disputed islands near Greenland, like Hans Island, are shown clearly as lying in Canadian waters.

Canada with Polar Claims, Parks

Perhaps what exists on paper trumps reality, creating an authoritative image of an expanded Arctic–a white plume that expands the amount of Arctic ice beyond the rendering of the Arctic Sea in its earlier if now outdated predecessor.

What exists on paper, once officially sanctioned, seems to trump the rapidly shrinking extent of arctic ice.  The map trumps reality by blinding the viewer, ostrich-like fashion, or keeping their head deeply buried in the proverbial sand.  The decision to show the thirty-year median of sea-ice extent in September in the years between 1981 to 2010 brings the map into line with the way that Environment Canada computes sea-ice extent.  And the augmentation of Inuit toponymy for regions near the Arctic recognizes the indigenous role in shaping Canada’s toponym.  But it would be hard to say that either would be advanced if they did not have the effect of expanding Canadian sovereignty to the arctic.  The reality it maps clearly mirrors the shifting interests of the state at a time of the shrinking of Arctic ice due to climate change, more closely than it shows the effects of global warming on the ice-cover of the northern regions, let alone in the Arctic itself.  With more maps that diminish the effects of global warming, the orienting functions of the map seem to be called into question in themselves.

Merry Christmas indeed!

2 Comments

Filed under arctic, arctic melting, climate change, Global Warming

Smelling the Coffee

Coffee beans lying on a burlap sack map the entire world, but belie the fact that the area suitable for growing coffee beans stands to be reduced by as much as half by 2050, if climate change continues, and the Arabica beans grown in tropical highlands stop receiving the year-round rains that not only enable but nourish their growth.  If that isn’t a wake-up call, what is?  Some 25 million farmers rely on their production of the beans–most of whom are small farmers–but rising temperatures predicted could radically reduce and effectively circumscribe what those in the know call the “coffee map” that tracks the traffic in beans.

The sorts of disruption in growing beans that localized drought in those tropical highlands seems almost destined to bring–as the worst dry spell in decades that hit Brazil’s coffee belt, destroying a third of the crop or a decline by a half in coffee bean yields in Tanzania since the 1960s, as temperatures warm and the ground becomes more wet, stand to grow not only the price of the two and a quarter billion cups of coffee we humans consume daily, in what seems like a private experience, meaning that the beans will no longer be so abundant in those burlap bags.  In Columbia alone, coffee leaf rust that is the consequence of weather that is both warmer and wetter stand to damage some 60% of the country’s agricultural land by 2050, making for a decreased abundance of beans and ever more removed cup of joe.  Indeed, coffee beans are particular enough about growing conditions that to remain optimal conditions of production, the temperature should remain between 18–21°C, and once rising above 23°C, bean quality declines and the plant grows far too fast, noticeably changing its taste, flavor bouquet, and aroma . . . with a detectable shift occurs with only a rise of only half of a degree at the wrong time in the growing season, in ways that could change coffee harvests far sooner that one might expect.

 

Coffee beans map

 

More than any other sector of life, the tremendous growth of coffee consumption over the past decades invites a daily morning exercise of geographic literacy.  In hubs of metropolitan coffee drinking, the local origins of beans are invested with a provenance that is supplemented by detailed descriptions of their practices of cultivation.  The geographic here primarily signifies or maps to the gastronomic; provenance of coffee has a deeper resonance than the locations of their roasting, and erases the huge distances traversed in their transportation or the local climates in which they were produced. The importation of coffees and costs of coffee farming are naturalized within local coffee bars as a geographic palate, as we’re accustomed to having Sulawesi, Rwanda, Burundi, and Tanzania among the rotating coffees of the week, and in our cups; their names, instead of the once-dominantColumbian or Brazil beans, are part of our routines that are often stripped of geographic signification as place-names–even though they might be better understood as a geographic lesson with climate warming as its subject.

Can maps help?  They might not disrupt the individual experience of a good cup of coffee, an intensely pleasurable and even intensely neurologically stimulating activity, but map the names tied to the pleasure off caffeination to the broader land of the land, moving from the domestic sphere of coffee drinking and the half-private space of cafes where the precious brown liquid now circulates at considerable costs, all too easily concealed in the privacy of our pleasures–

 

325105_3f7f2740198ea41e_bLouis Marin-Bonnet, “Woman Taking Coffee” (1774) Cooper Hewitt (inked engraving)

 

–to the global world in which this space must be situated. and the global markets on which they our all too easily internalized habits of caffeination increasingly depend.

The lopsided distribution of this conversion of toponymy into gastronomy is evident in a map of where this huge rise of coffee consumption and importation has occurred.  If coffee beans were introduced to the future United States in the eighteenth century, coffee has become among the leading importers of beans worldwide.  Americans now consume some 23 gallons each day (or 22.1 according to Wikipedia)–but declined far below the 48 gallons Americans were said to consume annually in 1946–0r the 62 gallons downed annually in far chillier Finland.  Yet it has become part of bloodstream–literally–and an unprecedented (although we lacked earlier metrics) 161,000 folks listed coffee making or serving as a “skill” in 2013.

 

 

Screen shot 2013-02-11 at 9.26.23 AM

 

We might call this the browning of North America, ignoring that the distribution of local blends, pioneered by Peets and popularized by Starbucks, before being refined by Blue Bottle or Four Barrel, masks variations in a topography of coffee drinking in the United States far more variegated than the homogeneous brown of the United States.  (The fact that Canada is yellow may seem comforting, but conceals the very urban nature of this social ritual:  notice how those brown dots congregate around Toronto, Montreal, Vancouver and Ottawa . . . )   The absurdity of nationally ranking habits of daily caffeination aside (although there’s an academic press title in here somewhere), the most striking aspect of this map is the huge area of the world left in white, shown here only from the equator since no countries below the equator import coffee beans in such quantity.

 

Coffee IMporting Countries- Top Ten

legend

 

Indeed, the ten largest coffee importers, mapped in yellow, not brown, suggests an imbalance of equatorial countries whose products tend to wake up folks in northern climes.

 

mapMNational Geographic

 

The more detailed mapping of the production of coffee by bags of beans, mapped by Oxfam for 2001, showed a nicely skewed data distribution, with those non-growing regions left suitably blank, as if they thirsted for the brown stimulant that came pouring (or steaming) in from equatorial climes:

 

Oxfam 2001Oxfam

 

There is a clear “coffee belt” whose discovery and demarcation the Coffee Grower Association of Hamburg claims responsibility for:

 

coffee_beltGerman Coffee Association

 

And a lot of imported coffee is needed–creating what has indeed long been a pretty big business interest in the US, even before the boutiques of metropolitan areas from the 1990s.  Even if, once this huge amount of unroasted beans is divided per capita, rendering regions like Canada and Scandinavia distinctly darker, and measured by consumption of cups/day alone, the geographic distribution looks a bit different in 2011 when mapping coffee consumption per capita in this clickable map of circa 2008:

 

2011 coffee map

 

l_581_521114deb92a786b0f86b920c30990d5-1

 

 

Which returns us to the interests that all maps conceal.  By the alchemy of toponymy, the regions from which the beans themselves derive, of course, come from the very equatorial regions that are the sites of forestry.

This is evident in this far more anodyne map, prepared by someone trained in the school of neo-corporate graphic design:
Coffee and Forests map--50 def:37 cps

 

I appreciate the hand-drawn oval projection, crafted with care in the midwest city of big shoulders, which suggests that if all roads led to Rome, all beans flow to Chicago:

 

Global sources of coffee on ms map

 

A more informed map might link the cultivation not only to forested regions, but to the very “hot spots” whose local biodiversity is most threatened by global warming, and where the inefficient use of water widespread in coffee cultivation least practical and most pernicious.  For it is not only equatorial areas, but from the driest areas on earth:

 

hotspots_coffee_map

Conservation International

 

The overlap of ‘hot spots’ map onto coffee-growing regions alarms; coffee cultivation is widespread in 16 of the 34 most threatened ecosystems.  And this is the tip of the iceberg, to use a somewhat mixed metaphor unless one considers iced coffee, of the paradox: privileging the locality of cultivation in maps of caffeine consumption reinforces the fragility of local ecosystems.  This is a very different map, speaking map now, from the manner that an  earlier cartographical image set the details of consumption as an inevitable but conscious choice, concentrated in one icon, as opposed to the naturalization of growing in isolated pockets of uniform unattractive gray:

 

Coffee Map of the World

 

Indeed, the conscious coffee drinkers at the Water Footprint in the Netherlands have mapped the severely disproportionate gross virtual water import that results worldwide:

 

Coffee's Water Footpringwaterfootpring.org
The “flows” of coffee beans might be mapped, if somewhat less legibly, in comparison to those of chocolate, whose parallel commerce from the New World matches it as a popular stimulant from the New World, as Mary Norton reminds us, that in fact was similar in its function to coffee:

 

Coffee and Chocolate

 

In part, this is a local story, with much of the jumping value of java able to be registered in the Port of Oakland, as shown in this bar graph which groups all beans as a whole, independent of locality, but reflects Oakland’s significance as a global hub of the importation of coffee beans.

 

SF-AB759_ROASTE_NS_20120926202103

 

Let’s recall the lopsided nature of a current map of coffee indulgence that this demand reflects:
Coffee IMporting Countries

 

and consider the possibility of a re-mapping our daily habits or affectation for caffeination, through this map of the network of coffee distribution and consumption, removed from most familiar geographic categories.  The schematic map is courtesy San Jose-trained Roxanne Pasibe:

 

248260ada0281088a11dea8323cabc75

 

In the initial graphic, the beans naturally drop to the ground, and into our bags. Let’s try to map how they come to get there, and into our cups.

 

Coffee Heart.pngClimate Institute

5 Comments

Filed under climate change, Coffee, Coffee Maps, Fair Trade/Shade Grown, water footprints