Tag Archives: global climate change

Facing Extreme Climate Upon Re-Entering the Paris Climate Accords

In an age it is disturbingly familiar for news maps to place us on tenterhooks by grabbing our attention, the existential urgency of the blanket of the continent with icy arctic air was no exception. But if the images of sudden entrance of frigid air shocked most states in the union and lower forty eight, the farther one collapsed the week of freezing cold, the more one could see a clarion call for the re-entrance into the Paris Accords,–as if the visualizers of meteorological disturbances at NOAA, newly liberated, were able to show the dangerous consequences of the tippy polar vortex and uncertain weather in an era of extreme climate change. Bright color ramps foregrounded falling temps in rich magenta or icy blue were almost off the charts, from the uppermost end of the spectrum in their duration–below–or in the low temperatures that were advanced–in maps that push the boundaries of expectations with urgency. As maps of the hours the nation was plunged into subzero trace a purple cold front advanced all the way into the deep south as it spread across the continent from up north, the continent shivered under the icy blues over the mid-February cold spell. As we re-enter global climate accords, and consider what global accords can come to terms with climate change, it seems opportune to consider the alerts that remotely sensed mappings of our changing global climate chart.

The chromatic intensity jarred with the familiar spectrum of meteorological maps to shock the viewer: the map challenged any reader to try to place the arrival of cold air and hours below freezing in a frame of reference, to dismiss the incursion of icy air up to the US-Mexico border as an irregular occurrence, more than a harbinger of premonition of the cascading effects of extreme weather, let alone a warning of the limits of our national infrastructure to adjust to it. If the focus of the NOAA maps of the National Weather Service fulfilled their mandate by focussing on the territoriality of the United States, these images and the news maps made of them communicated a sense of national violation, if not of the injustice of the incursion of such unexpected freezing temperatures and Arctic air, as if it were an unplanned invasion of the lifestyle, expectations, energy policy, and even of the electric grid of the United States, oddly affirming the American exceptionalism of the United States’ territory and climate, as if the meteorological maps that confounded predictions were not a global climactic change.

And in the maps of the fall in national temperatures, as in the header to this post, the news that the nation witnessed a frozen core spread south to the southwest, almost reaching the border, seemed to shift our eyes from a border that was mapped and remapped as permeable to migration, to a map of unpreparedness for climate change, almost echoing the systemic denial of climate change that has been a virtual pillar of the Trump Presidency on the eve when Donald Trump had permanently relocated to Mar a Lago, one of the last areas of the nation that was not hit by the subzero temperature anomalies that spread across north Texas, Oklahoma, Kansas, Missouri, New Mexico and Iowa, plunging the many states we though of as “red” during the past election an icy deep blue interior in mid-February down to the Gulf Coast–as if the colors were a national crisis not of our own making for a nation that had obsequiously voted Republican, withdrawn from the Paris Accords, and allowed the warmer temperatures to be located only in the state where Donald Trump was now residing in Mar a Lago.

–that , as the week of arctic air’s arrival wore on, the newspaper of record glossed by a color ramp of low temperatures few residents southern states expected to be plunged into subzero surroundings. The color ramp they chose to chart how gelid air poured set off a cascade of events and disasters nicely demonstrated cascading effects of climate change on the nation, as the shock of low temperatures sucked the national attention away from the border, and begged one to come to terms with the challenge of climate emergencies in global terms. The frozen core of the nation was a wake-up call, re-re-rendering the familiar Red, White and Blue in faded out terms of the distorted levels of cold the nation currently confronts–the increased escalation of which we are projected to face.

Lowest Temperatures in Coutnry, February 12-16/New York Times, February 18, 2021

The entrance of gelid air from a polar vortex poured across much of the midwest in unrelenting fashion. Plunging subzero temps hit the Texas coast that overloaded electric grids and shocked weather maps that seemed out of whack even for mid-February, as even the sunbelt of the southwest turned gelid cold as subzero temperatures arrived over a week, plunging the arctic neckline down into Texas, and almost across the southwestern border.

The shock of this map is its dissonance, of course, from the weather maps that we are used to seeing, the entire nation now, in mid-February, almost blanketed by subzero temperatures of deep blue cold, extending wispy breezes into Utah and Arizona, as well as across Georgia, South Carolina, and Virginia, leaving only SoCal and Florida pleasantly warm. The national composite that forecast a deep freeze running right down the center of the United States and spreading to both coast at northern latitudes gave the nation a frozen core at the end of a hotly tempered election, that seemed a wake-up call to attend to long-term as well as immediate dangers of climate change, but made it difficult to disentangle the global issues from the existential question of millions in Texas and other states who were left without heating faced dangerously cold and unprecedented subzero temperatures, without clues about where to keep warm.


The impact of climate change has rarely been so directly placed on the front burner of national security–climate change deniers have preferred to naturalize polar melting by removing it from human agency so far to attribute shifting temperature to sunspot activity, or invoke longue durée theories of geological time enough to make noted paleontologist Stephen Jay Gould turn over in his grave. Doing so has stoked a devious confusion between local and global, and immediate and long-term, are bound to be increasingly with us in an era of extreme climate change. The sudden entrance into our borders of such gelid air is an effect of global warming. We are loosing our beaches, and cities like Galveston, TX, Atlantic City NJ, Miami Beach FL, Key West, and Hilton Head SC are not alone in falling into the sea to lie mostly underwater in 100 years. As Ron Johnson assured us that “Greenland” derived its name from the green leafy bucolic forests of the continent–“There’s a reason Greenland was called‘ Greenland’–it was actually green at one time [even if] it’s a whole lot whiter now”–as if the truth about deep time was concealed by those overly alarmed ice shelves falling into the Atlantic, shifting ocean salinity with a sudden injection of freshwater that may alter the Gulf Stream, we were invited to contmplate the fierce urgency of now.

Perhaps the whole question of a span of time, as much as the theoretical proposition of global warming, was a concern. For we are as a country already looking forward with apprehension at maps of economic costs of flood damage to residences, amidst the anxiety charged year of COVID-19 pandemic, with multiple variants now on the loose, to prepare for escalating costs of climate change across the country, and not only on the coasts.

If Louisiana and California coastal cities will seem destined to stand the greatest risk of damage or residences, both due to the high valuation of California’s coastal properties, and the danger of hurricane damages across the Gulf Coast, the increased risk that residences alone face bodes serious economic losses across the United States. Yet as risk rises and brings with it escalated insurance rates, we stand to see the cascade of economic losses, of the sort we have not come to terms in imagining the fanciful image of a time when Greenland enjoyed lush forests in the past–a scenario that never happened, inventive etymologies aside–although it may soon host plant life as it looses its permafrost.

Continue reading

Leave a comment

Filed under anthropogenic change, Climate Change, data visualization, Global Warming, weather maps

We Think Our Shores Are Stable,–but Need to Know that They Are Not

All maps stake propositions:  as much as embody geographical information, they make arguments about how a landscape is inhabited.  But climate change maps that model future scenarios of warming, increasing dryness, sea-level rise, or glacial melting are propositions in a strict sense, as they construct frames of reference that orient us to, in the very ways Wittgenstein described propositions, “a world as it were put together experimentally.”  Shoreline change can be mapped in deep historical time, or over the past century, in interactive ways that reveal and allow us to zoom in on individual sites of sensitivity–





–but the processes of mapping such change cannot rely on contour lines drawn on a base map.  For to do so is to abstract a static photograph from a global process that they only compel one to try to better visualize and comprehend.  The processes of change are extremely complex patterns of causation that exceed most map-viewers competencies, despite the wide diffusion of claims and counter-claims about global warming and climate change in public discourse, which has effectively increasingly threatened to dislodge the preeminence of any position of expertise on the issue, demoting the actuality to a theory and removing many public statements on its existence from the map of coastal change, or the relation of the land to submerged territory.  We are in danger of adopting an increasingly terrestrial or land-locked relation to how climate change affects shores, because we map from the boundary of the landform, as if it were fixed rather than a frontier of interchange and exchange, both above an under ground.




Far more than other maps, maps of climate change demand unique training, skills, and education to unpack in their consequences.  And when the propositions staked in maps of climate change have increasingly come under attack for political implications, as if the scenarios of climate change are formed by a cabal of data scientists and climate scientists to advance independent agendas, or a poorly articulated and politicized climate research, it seems that the special skills used to interpret them and the training to view them have come under attack for not corresponding to the world.

Real fears of the danger of the delegitimization of science run increasingly high.  But attacking the amazingly dense arrays of data that they synthesize seems to suggest an interest in shutting down the very visualizations that allowed us to conceive and come to terms with climate change.  The open suggestion that digitized scenarios of climate maps were only designed to terrify audiences and advance interests not only undermines discussion and debate, but seems a technique to destabilize the emergence of any consensus on climate change.  Although the fears of an immediate loss of climate data may be overstated for the nation, the loss of a role in preserving a continuous record of global climate data is considerable given fears of reducing space-based remote sensing.  Such observation provide one of the only bases to map global climate data, ranging from aridity to water temperature to temperature change over time.  The hard-line stances that Trump holds about climate sciences are expressed in terms of the costs they generate–“very expensive GLOBAL WARMING bullshit,”–but extend to denigration of climate scientists as a “glassy-eyed cult” by science advisor William Happer–who in George W Bush’s Dept. of Energy minimized the effect of man-made emissions on climate change.

Both bode poorly for the continued funding of the research agenda of NASA’s earth sciences division.  And the need to preserve a more coherent maps of man-made climate change grow, choosing the strategies to do so command increased attention.  The dangerous dismissal of climate sciences as yet another instance of “listening to the government lie to them about margarine and climate change” or prioritizing the political impact of their findings to draw attention to global warming and climate change seems to minimize the human impact on climate and recall the censorship of climate science reports from government agencies by governmental agencies and political appointees from a time when de facto gag orders dissuaded use of the term “global warming” over a period of eight years, a period of the harassment and intimidation of climate scientists. The term of “climate change” seemed agnostic of human agency–unlike Al Gore’s conviction that “global warming” was a global emergency.  As well as actively destabilizing ties between human-caused emissions of carbon dioxide and other heat-trapping gases with global warming, Bush asked government agencies investigate “areas of uncertainty” which his successor tried to clarify through explicit research goals.


global warming


Yet the role of maps in making a public case for climate change and its consequences seem to have made the project of climate tracking and earth observation under increased attack, as the project of mapping climate is in danger of being removed once again from scientific conclusions about global temperature rise, subsurface ocean temperature rise, or glacial melting–as the ways that climate change maps embody actual environmental risks is effectively minimized.

Continue reading

1 Comment

Filed under Climate Change, climate modeling, data visualization, environmental monitoring, manmade climate change

Our Globalized Maps of Ocean Temperatures

Classical terrestrial world maps–either the detailed terrestrial world projections that associated with the atlas-makers Mercator and Abraham Ortelius or those terrestrial planispheres noting cities and ancient monuments of Ptolemaic design–were based on a need to find a solution to how to transfer the curved surface of the world to a flat surface.  When we are talking about global events–from warming to El Niño–we need to synthesize global variations in a spectrum of a set of surface temperatures that only a satellite can assemble, and to read them as inscribed on a global surface.  The virtual image of weather changes depend on information  removed from actual landscape, or inhabited land–but rests on the persuasive power of a compelling image of the earth’s curved surface in the synthesis of a coherent image of ocean temperatures over a continuous expanse of the earth’s surface:  although undoubtedly provoked by the world’s inhabitants, and a revealing record of the anthopocene, the mapping of oceanic temperature is something of a record of climatological impact and of the increasing need to come to comprehend shifting temperatures of the word’s oceans in truly globalized terms.

Is this map more powerful because it recalls a familiar globe, and because it promises to mediate record of the ocean’s equator that would be otherwise totally unable to be visualized in a coherent visual form?  The global visualization creates a compelling record to understand the odd embodiment of a shifting pattern of climate prediction, even if the synthesis lacks reference to a cartographical model or a set of scribal practices.  The map provides a way of detecting (and indeed predicting) unusually warm ocean temperatures that create El Niño, in ways that trace the preconditions to create a cascade of climactic changes provoked ocean surface topography through a visual syntax akin to a weather map:  the virtual globe deploys digital media to map movement across and motion through oceans, tracing shifts in subsurface ocean temperatures over space that would be otherwise concealed from sight:  the silhouettes of  the continental masses not only displace attention from the land, but subordinate land weather patterns to the irregularities changes in atmospheric pressure and sea temperatures that they foreground in a strikingly technicolor map whose hues mirror heat-sensitive readings, rather than areas of settlement.  (Continents are only present as ghostly images in these maps that direct our attention and interest to the phenomena sensed in ocean waters.)




The satellite thermal map of the swelling of seawater around the equator, generated by NASA’s Jet Propulsion Lab, tracks the temperatures beneath the swelling of oceanic waters to forecast El Niño oscillations this summer and fall.  By tracking significant sea surface temperature anomalies, they trace changes to gauge the possibilities of potential future major weather disruption of the globe, and to try to comprehend the shifts in temperature that might change weather systems in so drastic a way to impact food chains, agricultural economies, and climactic experiences in similarly out of the ordinary ways, exposing the otherwise hidden shifts in ocean temperatures by catchy chromatic spectrum of colors around the equator.


Jet Streams


Rather than only trace migrations, the map marks pronounced sea surface temperature rise across the Pacific is suggested by the surface’s deep crimson reds, extending from the islands off Singapore.  The Google Earth satellite view contrast to the arboreal distribution of the topography more evident, as if to embody the threat that it poses to the landmasses that are the usual focus of world atlases.


latest_sst.jpg   SST Anomalies


The spread of warm waters across the Pacific indicated in such maps echo the famous charting of sea-temperature anomalies of 1997-98 El Niño, which La Niña followed, when the end of trade winds led warm waters to slosh Eastward, pushing cooler water down from the surface, and interrupting the feeding habitats of fish and aquatic environments and interrupting the local marine food web.  The map traces shifts in surface temperatures by tracking of anomalies in the below video to suggest an advancing augmenting of surface temperatures across the equatorial Pacific.


The anomaly of equatorial sea-temperatures across the Pacific is most easily pictured by mapping the greatest warmth in red:  the visualization of global variations across the ocean surface suggests sustained pattens of temperature rise, mapping not only temperatures but their divergence the form the median, and tracing patterns in their variability over time–far more meaningful in the global ecosystem than the relations between surface temperatures tout court.

The result is a new globalist map, tracking not countries and border lines or borderlands, but that “other ecumene”–that other inhabited world–of oceans and ocean life:



At least the hope is to start to direct attention to it, and to an area of the world’s temperatures that are not often mapped.  The above visualization rests on an ability to synthesize a coherent constellation of multiple factors–prepared in a cogently digested form–but proves a guide to local imbalances and deviations, in the hope that we can grasp the global impact of these increases in the collective image that results, offering considering subtlety to register local shifts across space that help reveal the whirls, eddies, flows and sloshes across the ocean seas, even if it might require far more learning to interpret in its consequences than the more familiar sorts of weather maps that we are used to access on line.  While not a globe or a sphere that earlier globe-makers might recognize, the elegantly articulated silhouetted continents suggest contre-jour qualities of the map, as if demanding that we start to try to pay attention to the deeper temperature changes in the seas that will reveal how shifts in atmospheric pressure create temperature shifts that will lead to a redistribution of nutrients in the ocean created by the consequent shift in upwelling and alter rainfall patterns worldwide or create droughts or typhoons as the result of an unusual warming of waters just below the ocean’s surface.

The dazzling image of the surrounding medium that conditions and prepares the climactic variations of the unmapped land to which they are so deeply linked, create an image of a global weather system we are only slightly prepared to come to understand.  The map’s comprehensive coverage of ocean temperatures is a shocker of a visualization, employing a rainbow of gradations of color to striking effect that combines both the exactitude of pinpoint images and the tools of digital visualization.  It is a sort of learning experience or primer on the immensity of global climate change, creating several deeply intractable pockets of climate change all closely located offshore, scarily noting the surprising relative proximity of the warmest areas to those regions, shown in white, which designate the remaining regions of polar ice, at the same time as the change in temperature seems embodied at an odd remove from the viewer or the surrounding shores.  Similarly generated maps created from remote sensing constitute some of the greatest emblems of the environmental disasters of our time.  Other options used by NOAA to chart the swell in temperatures in the upper 300 meters of the Pacific ocean in 2014 track a growing swell of something like an oceanic monster that grows in swells beneath its surface, evoking something of a large-scale sea monster that gradually began to reach across the Pacific toward the shores of South America, against the easterly winds that usually send surface water west across the Pacific.

The progress of waters beneath the ocean’s surface seem to track an animated entity in this set of subsurface charts, which capture the progress of the slosh of water magnifying the subsurface temperatures across the Pacific out of actual proportions to increase the visibility of temperature changes that seem to flow as if they were submerged underwater almost biomorphic forms resembling monstrous worms or undersea tornadoes that channel currents of churning heat that span the pacific, deep below the ocean’s surface:


Feb 19 slosh,jpgmid-February, 2014


Feb 19 slosh,jpg March 16 sloshmid-March, 2014   March 16 sloshmid-April, 2014


In  a Kelvin wave, pushing from the warm waters of Indonesia to South America, the slosh of ocean waters can prompt the cascade of atmospheric events.  The bounded parameters of the visualization are limited to the ocean, but are meant to provoke a similar imagining of the potential events that such a swell might trigger, and provided one of the first indications of a probability of possible climactic shifts over the months to come. Despite the specificity of readings that it can coherently synthesize, the chromatic blending of these measurements in a real ‘heat map’ of ocean temperatures create a false demarcation of categories, by removing the temperature changes from their effects in magnifying their deviation from the norm.  Mapping the ocean as a surface of travel or site of navigation has long challenged the categories of visualization employed in land maps, if only because of the fact that the notion of oceanic space challenged the categories that were developed to visualize surface topographies.

The synthesis of mapping temperatures at different depths track migrations of water in the medium of the ocean is perforce removed from the specificities of place transcribed and tried to be pinpointed in earlier engraved maps,  that tried to render legible the currents, routes, currents and eddies of the sea, or to record the variations in the underlying ocean floor.  The globalist maps of the ocean’s temperatures that result offer something more like an animated graphic, instead of an objective form, because they lack clear contour lines or fixity that were the basis by which so many earlier ocean maps tried to calibrate currents, negotiate sea-routes, track winds, or map the topography of the ocean’s floor.

The embodiment of the expanding biomorphic swell in subsurface temperatures, mapped as extending across the Pacific, renders the shift in temperature as gliding contra corrente. They offer a major change in the claims and abilities of totalistic mapping of the oceans, and in the attribution of embodied characteristics to the ocean–which emerges now, if in ways that seem metaphorically misleading, as somewhat organic, as if it were something of a separate living entity from the land, which almost gained its own context, rather than appearing as either a surface for viewing nautical travel–


North America with the Opposite CoastsRumsey Associates


–or the result of an array of bathymetric bearings of submarine topographies by collating depth-soundings taken by sailors on weighted lines.


SF Bay


Of course, the topic of the maps–global climate change–is itself removed from the precision to mapping nautical location to calibrate calculated routes, path, or place as marked by means of a line, and understand risks of nautical travel, and a concept of travel rooted to the ocean’s superficies.  The maps of oceanic temperatures not only reflect the transferral of maps from paper to the far more heavily pixellated medium of the screen, but a search for visual formats of embodying shifting temperatures that were often elusive as subjects of global mapping in earlier charting traditions.

As such, they suggest, in the rhetoric of uncovering hidden changes detected by satellite, both the need to try to process global shifts in temperature in tactile terms, an eery remove at which the changes in oceanic temperature lie from the viewer, hinting ominously and only by extension about the likely possibility of future risks of global climate change to which the world’s inhabitants are now, as if suddenly, finding themselves to be subject.

The new premium on taking stock of mapping temperature change is about learning to visualize the migration of ocean temperatures as if by analogy to a weather chart–and indeed the resemblance to the images of cold fronts on the Weather Channel seems striking–but in ways that take into consideration how these movements in temperature migrate in currents and swells through and across the ocean’s own watery medium, and cannot only be considered in the localized perspectives of the individual points of a depth-charge.  For the mapping of oceanic temperatures are not only a way of mapping the communication of heat, or the rising temperatures of the world and its atmosphere, but the newly inter-related concept of what it means to be warm.

Leave a comment

Filed under global weather mapping, mapping abnormal sea temperatures, mapping global climate change, mapping ocean swells, NASA Jet Propulsion Lab, Weather Channel, weather maps