Tag Archives: open data

On the Road and Off the Map: Mapping Roads for Self-Driving Cars in an Increasingly Over-Paved World

Even as autonomous cars provide a more radical change in patterns of mobility than any change in transportation, the amazing amounts of information that they synthesize suggest a way to process the rapid increase of roadways that have clogged much of the inhabited world.   Yet the new means that they bring to amassing of data to put places on the map comes at its cost.  Indeed, even the hopes to provide a high-density record to be able to navigate roadspace leaves an eery imprint for what it leaves out, and the ghostly skeletal system of roadways that they try to trace, which raise questions about the sort of space that maps serve to embody.  For rather than trace the deserted roads of an imagined landscape ready to explore, the streets blanched of a world where discoveries are made suggest a tracery of recorded tracks removed from local testimony or place.

For the patterns of the maps for self-driving cars, rather than fit into a record of inhabited space, or of the natural world, seem to pose propositions of the existence of a purely driven space, occupied less by cars or at least not by passengers but by a visualization of road conditions, in ways that eerily suggest less of a world that can be filled in as a broader canvas of living or nature, but a purely man-made world.   Despite the considerable appeal of a crash-free world of the automated vehicle that the huge demand for self-driving cars promises, the high data density maps being developed to place space on a map presents a terrifyingly circumscribed landscape of roadways that demand attention as a way of looking at the world–and symbolizing space.  Perhaps this is largely due to their machine-readable nature.  But it also seems terrifying insofar as one rarely appreciates the costs for what is left off the map, and the removal of the map from the roadways–and the alienated image of the roadways that they seem to present.

For like the paths of pilgrimage of medieval times, which viewed isolated itineraries with no reference to geographic space, or the disembodied paths of nautical charts whose rhumb lines, drawn over the world, suggest navigational itineraries drawn across the Mediterranean, the skeletal tracery of the roadscape suggests a sense of routes removed from testimony and disembodied, distilled to the information of the roadways and a purely anthropogenic world and removed from its context, as if roads remain oddly stripped of their local references.  If places are where we inhabit, the disembodied nature of the datasets of the maps for self-driving cars are removed from them, and suggest links around them that lack any actual testimony.

 

ITaly as Nautical Compilation

 

And despite the possible benefits for autonomous cars, maps made for ensuring safe driverless driving test the not only the huge amounts of data that enter in maps, as well as the problems of prioritizing selective data, that raise questions not only about the richness of these high density maps, but the sorts of world that the arrival of autonomous cars register.

 

1. The eerily ghostly roadways of the maps made for self-driving cars seem quite proper:  for they track the road as inhabited by the car, and not by the spaces around them.  If the intellectual property of tools for processing and formulating driverless maps stands at the cutting edge of recent lawsuits, is the increasingly ghostly character of maps made for driverless cars not also a serious cost?  The fragmentary picture of strings of man-made space erase the notion of a pilgrimage to a detention, providing a real-time record of roads’ obstacles, speed rates and traffic density, offering clues for how the car can move across and over space, but does so in the context of distilling the roadways to the basic criteria that cars will most especially need to know, and far less about the spaces that we might visit.  While made for autonomous driving vehicles, the absence of testimony and the lack of differentiation among places seems poignantly and particularly wanting.

The roadways that entangle much of the inhabited earth with transit corridors demand a complicated set of tools for their mapping, but does the erasure of the experience of driving, converted into a matrix of data, also register a deep danger in how we have come to inhabit space?  For if the proliferation of interchanges show the growth of roadways and arteries of automotive transport, some including up to fifteen lanes, branching out into eight directions, inspiring one netizen to ventriloquize, “Car GPS: ‘I can only take you this far, the rest is up to you,‘” imagining frustrated befuddlement at this Chongqing interchange, whose curving on-ramps and shifting elevations can hardly  be untangled by data from motion sensors or GPS.   The radically curtailed influence that the map offers readers stands in uneasy juxtaposition with the fears mazes of manmade roadways may even outstrip navigational capabilities.  One imagines not only the sort of dialogue that might occur with automated navigational services as Siri, their GPS coordinates overloaded by the multi-directional arrival of cars on different lanes in the freeway exchange, but the difficulty–and the need–for the data density of a map for automated cars that would process the possible courses of lane changes and arcs of on-ramps in ways that the driverless car would be able to navigate.

 

chongqing_crazy_overpass.jpgShanghaiist

 

2. All maps are made to meet demands, and the expanding market for maps for self-driving cars is no exception.  But if we have become able to map traffic and routes for some time, the ghostly sense of inhabitation in maps for self-driving cars seem worth reflection–for the image of the world they create; the ethics of mapping the road conditions, and how theses maps orient us to the world. Fort he intelligence of such maps, made to be machine-read rather than read by humans,  propose a different notion of the “inhabited world” that is in truth increasingly closer to the road-covered world that we increasingly inhabit.  While the safety of such maps effectively allow us to be passengers in such self-driving cars, they also render a new sense of the worlds in which we are inhabitants.  For the haunting ghostly worlds that maps for self-driving reproduce and create provide an odd record of our increasingly paved-over world, where roads-free landscape is ever shrinking.  Are the maps for self-driving cars a premonition of a paved over future?

Driving is among the most familiar extension of an embodied experience, and the most familiar experience of navigation and way-finding that we have today.  But as maps are increasingly present behind the wheel, as it were, and built into many cars, today, both in the form of dashboard monitors, handheld devices, and disembodied voices, the relation of the map to the experience of driving has changed.  As maps have become data and datasets, we have no only constructed far more visually elegant renderings of roads and driving conditions.  As the maps for driving have departed from the over-folded pieces of paper, often ripped or worn at the crease, that used to be stuffed into the romantically named “glove compartment” and migrate underneath sun visors or into  the side-compartments on front doors, into interactive experiences that we read, they have in many ways transcended our abilities for attention.  And the increased demands for attention in our society and even for our drivers has led to a new market not only for for data rich maps, but for the maps that would help guarantee the safety of self-driving cars.

In an age where Google dominates mapping, creating the tools to develop maps for autonomous vehicles–“self-driving” cars that navigate by LiDAR software, real-time radar and laser sensors, streaming data libraries and programs–

 

perched processing directions for URBER.png

 

–which stands to prove the most important mapping innovation since the satellite, and perhaps the most valuable ever, as over thirty companies are applying to test-run their own self-driving cars in California, seat of the future, and the winner seems destined to be the one with the most complete and sophisticated mapping tools.  The tools planned to allow the cars to navigate real space don’t provide anything similar to a recognizable landscape, but Google’s driverless car division–Waymo–used the code-name ‘Chauffeur’ to refer to the armory of LiDAR tools as if to humanize the tools by which autonomous cars will be instilled with the ability to develop an effective cognitive relation to space.   Although autonomous cars may threaten to overturn the hegemony of Google has retained as a mapping engine,  the new remapping of the freeways also threatens a changed relation to most all extra-urban off-road space.   Is the growth of the market for self-driving cars not in itself emblematic of a new relation to space, where the car is less the instrument of exploration or navigation–the Keruoac’s image of being “on the road”–but a now bulky mode of transit and commuting, whose increasingly mechanical modalities of operation seem to be best performed by an artificial driver, built-in to the car.  Even as it is foretold AI is destined to replace increasing numbers of workers with world-changing effects that are only “50 or 100 years away,” we have kept fears of economic shocks and needs for massive retraining at bay, but face a profound fear of decreased human agency.

The diminished agency of the human is perhaps no more apparent than in the rapid race to design maps for self-driving cars–maps read by cars to familiarize themselves with traffic conditions and their routes, in ways that dispense with human judgment behind the wheel–one of the most privileged sorts of agency in existence–even if the maps for self-driving cars are now limited to the most mechanical forms of transportation on “smart highways” and shipping routes.

What sort of intelligence is lost, one might well ask, and what gained?

Continue reading

1 Comment

Filed under 3-D maps, autonomous cars, HD Maps, machine-readable maps, self-driving cars

Mapping Our Shrinking Shores

Coasts have provided the primary cartographical invention to understand the risks that erosion pose to property:  the coast-line is the boundary of the known land, and determines the outer bound of the real estate.  But the coastal fixation of the landlubber privileges the illusion of the fixity of the shore.  More than ever, assumptions about the fixity of shorelines must fall away.  Perhaps the most haunting take away from the Surging Seas web-based map of global shorelines forces us to take into account the inevitable mutability that must be accepted with the rising of ocean-level associated with climate change.

The web-map presents itself as a set of tools of analysis, as much as cartographical techniques, by which the rise of sea-level that has already risen globally some eight inches since 1880 stands to accelerate–emphasizing the alternate scenarios that the acceleration of sea-level rise stands to bring over the next hundred years, introducing a new concept of risk due to coastal flooding.  The availability of accurate GPS images of the elevations of homes have provided the possibility of sketching scenarios of sea-level rise to create readily zoomable maps of elevated ocean levels that confront us with at least the image of the options which we still theoretically have.  The contrasting futures created in this cartographical comparison shocks viewers with a salutary sort of operational paranoia only increased as one fiddles with a slider bar to grant greater specificity to the disastrous local consequences of rising sea-levels world-wide.

shanghai

In ways quite unlike the wonderfully detailed old NOAA Topographic Surveys which map shorelines at regular transects, or T-Sheets, recording the high waterline of tides across 95,000 coastal miles and 3.4 million square miles of open sea, the coastline is less the subject of these web maps than levels of potential inundation.  In a negative-mapping of possibilities of human habitation, blue hues invade the landscape in a monitory metric emphasizing the regions at risk of being underwater in a century.  Whereas scanned T-Sheets can now be viewed by a historical time-bar slider, the fixity of space or time are less relevant to the web maps than the gradients of possible sea-level rise caused by carbon emissions might force us to confront.

Surging Seas forces us to confront the possibilities of the future underwater world.  The infiltration of a deep shade of blue commands the eye by its intensity, deeper shades signifying greater depth, in ways that eerily underscore the deep connection that all land has to the sea that we are apt to turn our backs upon in most land maps, showing the extent to which a changing world will have to familiarize itself to water-level rise in the not-distant future.  It’s almost paradoxical that the national frontiers we have inscribed on maps has until recently effectually made impossible such a global view, but the attraction of imagining the somewhat apocalyptic possibility of sea-level rise seems almost to map a forbidden future we are not usually allowed to see, and has a weirdly pleasurable (if also terrifying) aspect of viewing the extensive consequences of what might be with a stunning level of specific and zoomable local detail we would not otherwise be able to imagine, in what almost seems a fantasia of the possibilities of mapping an otherwise unforeseen loss, not to speak of the apparent lack of coherence of a post-modern world.

For the variety of potential consequences of disastrous scenarios of sea-level rise posed can be readily compared with surprisingly effective and accurate degrees of precision, in maps that illustrate the depths at which specific regions stand to be submerged underwater should sea-level rise continue or accelerate:  zooming into neighborhoods one knows, or cities with which one is familiar, the rapid alteration of two to seven feet in sea-level can be imagined–as can the fates of the some 5 million people worldwide who live less than four feet above sea-level.  For if the shores have long been among the most crowded and popular sites of human habitation–from New York to London to Hong Kong to Mumbai to Jakarta to Venice–the increasing rapidity of polar melting due to climate change stands to produce up to a seven feet rise in sea-level if current rates of carbon emissions, and a mere four degree centigrade rise in global temperature stands to put the homes of over 450 million underwater, which even the most aggressive cutting in carbon emissions might lower to only 130 million, if rates of warming are limited to but 2°C.   (If things continues as they stand, the homes of some 145 million who currently dwell on land in China alone are threatened with inundation.)

The recent review of the disastrous consequences of a rise of two degrees Centigrade on the land-sea boundary of the United States led Climate Central to plot the effects of a-level rise of at least 20 feet on the country–and foreground those regions that were most at risk.   The webmap serves as something like a window into the possible futures of climate change, whose slider allows us to create elevations in sea-level that the ongoing melting of the polar ice-cap seems poised to create.  As much as offer compare and contrast catastrophes, the immediacy of recognizing the degree to which places of particular familiarity may soon stand to lie underwater performs a neat trick: for whereas a map might be said to bring closer the regions from which one is spatially removed or stands apart, making present the far-off by allowing one to navigate its spatial disposition in systematic fashion, the opacity of those light blue layers of rising seas obscures and subtracts potentially once-familiar site of settlement, effectively removing land from one’s ken as it is subtracted from the content of the map, and charting land losses as much as allowing its observation.

The result is dependably eery.  The encroachment of the oceans consequent to rising sea-level propose a future worthy of disaster films.  But the risks can be viewed in a more measured ways in the maps of sea-level on the shores of the United States calculated and mapped by Stamen design in the Surging Seas project that allows us to imagine different scenarios of sea-level rise on actual neighborhoods–the set of interactive maps, now aptly retitled Mapping Choices, will not only cause us to rethink different scenarios of shifting shorelines by revisiting our favorite low-lying regions, or allow us to create our own videos of Google Earth Flyovers of different areas of the world.  Mapping Choices provides a way to view the risks and vulnerabilities to climate change made particularly graphic in centers of population particularly low-lying, where they testify to the clarity with which web maps can create a vision of imagined experience as we imagine the actual losses that global warming is poised to create.  And although the recent expansion of the map to a global research report, allowing us to examine possible global futures that are otherwise difficult to comprehend or process the potential risks posed by the inundation of low-lying inhabited regions for a stretch of thirty meters, the potential risk of inundation is perhaps most metaphorically powerful for that region that one best knows, where the efficacy of a simple side-by-side juxtaposition of alternate potential realities has the unexpected effect of hitting one in one’s gut:  for debates about the possibilities of climate change suddenly gain a specificity that command a level of attention one can only wonder why one never before confronted as an actual reality.

Alternate Scenarios

Maps are rarely seen as surrogates for observation, and web maps often offer something like a set of directions, or way finding tools.  But the predicted scenarios of sea-levle rise allows one to grasp the local levels of inundation with a specificity that allow risk to be seen in terms of actual buildings–block by block–and wrestle with the risks that climate change portends.  The lack of defenses of populations in many regions are definitely also at great risk, but to envision the loss of property and known space seems oddly more affecting in such an iconic map of Manhattan–and somewhat more poetic as an illustration of the fungibility of its hypertrophied real estate and property values.

Of course, the data of Climate Change allows a terrifying view of the future of four degrees centigrade warming on low-lying Boston and the shores of the Charles, as the city is reduced to a rump of an archipelago–

Boston

or the disastrous scenarios for the populations in the lower lying areas of Jakarta–

Jakarta

or, indeed, in Mumbai–

Mumbai

Viewers are encouraged to imagine the risks of the possible alternate futures of just two degrees with an immediacy that worms into one’s mind.  The possibilities that GPS offers of instantaneous calculations of shoreline position and elevations allow one to view a potential reality where one can focus on individual streets with inspirational urgency.

But such scenarios seem somehow particularly graphic illustrations of risk for those regions where there has been a huge investment of human capital, as New York City, where it might seem credible enough to be mapped that they are poised to melt not into air but vanish beneath ocean waves.  For if Marx predicted with spirited apocalypticism at the very start of the Communist Manifesto that capitalism would destroy value to money as it expanded into future markets, as market forces abstracted all things into money–and “all that is solid melts into air”–the twentieth-century expansion of possibilities of environmental and human destruction have lent unprecedented urgency.  While for Marx the metaphor of melting of inherent value was the product of the capitalist system, the capitalist system bodes a strikingly similar image of sinking into the seas.  For huge expanses of the old industrial city–the piers and the old manufacturing zones, most all of the Jersey shore and area around Newark, Long Island City and the Gowanus canal seem sink apart from the shoreline in the future New York that Surging Seas creates, in ways that seem the consequence of industrial production and carbon surging far beyond 400 parts per million (ppm), with the addition of some 2 ppm per year, in ways that make it a challenge to return to the levels deemed healthy–let alone the levels of 275 ppm which the planet long held through the mid-eighteenth century.

That drought, hurricanes, disappearance of arctic ice (up to 80% in summertime) and rising sea levels are tied to the growth of greenhouse gasses hint how global capital might be closely linked to the sinking into the seas, and suggest the surpassing of a tipping point of climate change that is the counterpart to melting into air might be viewed, in New York City’s economic geography, as if to offer a poetic reflection of the migration of capital into the financial centers of the city downtown from its piers or areas of industry–

NY:NJ

–although half-hearted joking references to Marxist maxims (or geographers) is hardly the topic of this post, and the island of high finance that would be created in downtown Manhattan would hardly have ever been planned as an island.

Lower Manhattan Island?

What one might someday see as the lopping off of much of lower Manhattan might be far better tied to the runaway markets of a free-trade economy, rather than rational planning, and has no clear correspondence to property values.

lopped off lower Manhattan

Indeed, the mapping of the prospective loss of those residential parts of the city “where poor people dwell” (as do minorities) is undeniable, if one looks at the 2010 American Community Survey, regarding either in the city’s distribution of ethnic groups or households earning below $30,000, who remain the most vulnerable to the danger of rising ocean levels.

ACS 2005?

Income under 30,000American Community Survey (2010)/New York Times

But the disappearance of the Eastern Parkway and the Jersey shore are a blunt reminder of the extreme vulnerability of the built environment that lies close to sea-level–

Eastern Parkway and Atlantic Avenue above the seas

–and an actually not-too-apocalyptic reminder, but the mapping of consequences of man-made change that goes under the rubric of anthropocene, and is most apparent in the increasing quotient of carbon dioxide in the atmosphere and the warming that this may bring.  For if it has been approximated that there has already been a rise of sea-levels by some eight inches since 1880, the unprecedented acceleration of that rate, which will increase the dangers of floods from storms and place many of the some three thousand coastal towns at risk, are likely to increase as the sea level may rise from two to over seven feet during the new century.

350ppm-chart-300_fixed

The distribution is by no means uniform, and more industrialized countries, like the United States, are producing far more particulate matter, although they have been recently overtaken by China from 2007, and have atmospheres above 380 ppm in the Spring, making them more responsible for rendering higher temperatures–although the lower-lying lands below the equator may be most vulnerable to the consequences of climate change.

Screen Shot 2015-07-13 at 8.20.11 PM

Screen Shot 2015-07-13 at 8.21.44 PMScreen Shot 2015-07-13 at 8.22.35 PMVox– A visual tour of the world’s CO2 emissions

The increasing levels of particulate matter are attempted to be more locally mapped in Surging Seas.

The changes extend, in a nice dramatic detail, into the Central Park Meer rejoining the East River with the predicted inundation of much of the posh residential area of Manhattan’s East Side, all the way to Fifth Avenue.

Truncated NJ and absent upper East side

It is difficult not to compare the scenarios sketched in Surging Seas maps to some of the maps of those future islands of New York that Map Box and others allowed Sarah Levine to create maps of the heights of buildings from open data after the pioneering maps of Bill Rankin’s 2006 “Building Heights.”   When Rankin remapped Manhattan by taking building height as an indirect index of land value, he saw the island as clustered in distinct islands of elevation above 600 feet:

manhattan-heights

Radical Cartography (2006)

Levine used similar data to chart the fruits of Mammon in buildings above sixty stories.  Maps of skyscrapers beside the gloom of Surging Seas suggest those towers able to withstand the rising seas brought by global temperatures jumping by just two degrees Centigrade.  If one moves from the map of the bulk of lowest sections of lower Manhattan–

Two Inches in Lower Manhattan

with reference to Levine’s brilliantly colored carmine mapping of the highest buildings in the Big Apple, above forty-seven or fifty-nine stories, which one imagines might provide the best vantage points that rise above the rising waves, especially when located on the island’s shores.

Mapping NYC by Sarah

Sarah Levine Maps Manhattan

There’s a mashup begging to be made, in which the tallest buildings of over fifty stories at the tip of the island peak up above the cresting waves, and the rump of buildings in lower Manhattan offer contrasting vistas of the city’s contracting shores.  The buildings that create the canyons of urban life, the buildings of elevation surpassing sixty stories might suggest the true islands of Manhattan’s future, as much as the points that punctuate its skyline.

Sarah's Lower Manhattan

The realization of this possible apocalypse of property made present in these maps offer the ability to visit impending disasters that await our shorelines and coasts, and imagine the consuming of property long considered the most valuable on the shore–as rising seas threaten to render a whispy shoreline of the past, lying under some six meters of rising seas.  The prospect of this curtailing of the ecumene, if it would bring an expansion of our nation’s estuaries, presents an image of the shrinking of the shores that suggests, with the authority of a map, just how far underwater we soon stand to be.

Eastern USASurging Seas: sea level rise after 2 degrees centigrade warming

All actual maps, including Levine’s, provide authoritative reporting of accurate measures with a promise of minimal distortions.  But visualizations such Surging Seas offer frightening windows into a future not yet arrived, using spatial modeling to predict the effects of a rise in sea-level of just five feet, and the potentially disastrous scale such a limited sea-level change would bring:  the coasts are accurate, but their inundation is a conservative guess, on the lower spectrum of possibilities.  For in a country in which 2.6 million homes are less than four feet above current sea-levels, the spectral outlines of chilly blue former coastlines peak at a future world are still terrifying and seem all too possible, as much as potential cautionary tale.  The concretization of likely scenarios of climate change remind us that however much we really don’t want to get there, how potentially destructive the possibility of a several degree rise in ocean temperatures would be.

Leave a comment

Filed under Climate Change, coastal flooding, data visualization, Global Warming