Tag Archives: open data

On the Road: Maps for Self-Driving Cars?

The notion that AI is destined to relace increasing numbers of workers in unknown ways just “50 or 100 years away” suggests not only fears of economic shocks and needs for massive retraining, but a profound fear of decreased human agency.  This is perhaps no more evident than in maps for self-driving cars.  If maps remain among the most human of creations to orient viewers to place and space, creating a sense of spatial continuity we can’t otherwise readily perceive, the interest in making maps singly for self-driving cars is so removed from human skills of map-reading to make them profound alienating landscapes.  These are not landscapes occupied by humans, after all, but may suggest an increasingly common aspect of the landscapes which we are creating for cars.

We’ve long expected maps orient human readers to the continuity of inhabited space that affirm regional integrity and offer needed cognitive way-finding tools.  The continuity maps create makes them among the most humanistic of documents, extending cognitive skills and establishing needed frameworks for understanding space and place as less than abstractions but in concrete terms.  The cognitive magic of embodying spatial relationships to be grasped at a glance functions in large parts by the success of their selective conventions as tools to place ourselves in a form of vision accessible to the human eye, condensing markers that often lie in the land to a form we can readily engage.  The new maps that promise to orient self-driving cars to the roadways rather focus on charting data on flow, and the constraints of space, rathe than they organize space as a recognizably continuous record of the roadways.  They offer what one might call the “First World” perspective on our changing inhabited space.

And so the dramatically curtailed nature of the mis en scène of the maps for made for self-driving cars offer seems of interest:  to be sure, such maps make less appeal to human cognition, offering a purely machine-readable sense of place and of space oddly removed from human habitation.  But they condense and transpose a human relation to the landscape into readable form that, in the end, serve to orient us to how we navigate and voyage through space.   Is this mapping from a machine point of view, or is evidence of the new dominance of road space and roadways in an increasingly over- inhabited world, where place is eroded within a continuum of constant transit, far more sensitive to flow than place or space?

A rendition of the spatio-temporal database. Source: Zenrin Co.

A rendition of the spatio-temporal database. Source: Zenrin Co.

The uncanny absence of engagement with the natural–and the transformation of the map, as it were, to a network of man-made roads that is removed from a human landscape.  Once stripped of the real mosaic of place and removing human settlement from a web of forests, landscapes, or wilderness–and indeed entirely from the natural and non-man-made world:–the concentration on roads filter out any sense of motion through space from any experience outside a car.  In an overly detailed armature of isolated itineraries, organized from discrete data points, the maps designed for autonomous cars present a denuded landscape, stripped of context that is not immediate, and without any accreted human knowledge preserved in place-names.  If the map is often described as a text, Hi-Def maps replace text with rich data points and a feeds of real-time information from sensors.  Rather than locate oneself to space by successive markers in a landscape along a road or pathway–

Milestone-Peevers-Mamaroneck-2-of-3.jpg

M3Y31483

D.T. Valentine and George Hayward, Common Lands between three- and six-mile stones (1799) (Museum of the City of New York)

–the condensation of road signs and driving conventions seek to allow a car to orient itself to space in ways that strip space of its tactile surroundings, doing the work in many ways for orienting oneself to signs located along the roads.  Rather than chart location for a viewer, HD maps for self-driving cars are sensitive to capturing the constraints and flows by which a car can orient itself to the shifting traffic and crowded lanes that organize the changing terrain of highway space, an area to which so much increasing land cover has been dedicated across the inhabited world:  the HD maps take the space of the highways something like as a proxy for the inhabited world.  As records of the shifting space of the speedways, these maps promise to register the complex calculus of highways to promise a safe trip for future passengers.  If J. B. Jackson famously suggested the rise of “auto-vernacular” landscapes in the United States whose deceptive sense of ‘placelessness’ reflected the changing middle class lifestyles of suburban tract homes and suburban subdivisions and strip housing located along highways, the maps for self-driving cars are cultural landscapes stripped of signs of habitation save the roadways.

The provision of these maps by sensors register real-time accounts of spatial relationships that suggest the range of tools by which we have come to orient ourselves to the world’s paved highways:  yet at a time when Google Maps register space universally, from a synthesis of local surveys and satellite imagery, the maps for self-driving cars provide a downloadable cognitive framework, preserved on the cloud, for how cars can orient themselves to space by surveying their real positions on roadways, and depend less on human drivers in an age when, the distracted driving is so widespread, according to analytics company Zendrive, that American drivers use phones on 88% of the journeys they make on the road–and in spend 3.5 minutes per hour looking at their phone, and not only for directions.  In an age of mass-distraction where drivers can’t be as trusted to watch the road, maps for self-driving cars are perhaps needed to reduce risk–even two-seconds of distraction on your phone increases individual drivers’ risk by 20 percent; the National Highway Traffic Safety Administration recently counted almost 3,500 people deaths in distraction-related car crashes in the United States in 2015, and almost 400,000 injured, and the problem stands to worsen as after a recent trend toward declining numbers of driving fatalities, fatalities due to distracted driving are substantially rising, and especially among teens.  The statistics are unclear, as accidents involving cell phones are under-reported by authorities.  At a time when paper highway maps are no longer consulted, and in fact rarely sufficient–and navigation has migrated onto the phone, if not Siri, it’s no surprise the need and market for maps for self-driving cars has so markedly grown.

Screen Shot 2017-04-18 at 11.38.22 AM.png

The response to such distraction has been to provide a newly comprehensive map able to interface with self-driving cars, in ways that might allow our existing habits of distraction to grow.  In a sense, this is a local–as much as a universal–recuperation of the perspective of the single surveyor, providing a local automobilistic model of mapping with advantages one can’t gain from satellite/LiDAR alone, or a filling in of the gaps.   But the maps for self-driving cars are not made for human audiences, and as much as orienting individuals, offers perspectives of an inhabited world that is defined only by the extent of traffic on roadways–and which consumes increased cognitive attention of commuters–but which offers an extremely alienated perspective on the world.

Continue reading

1 Comment

Filed under 3-D maps, driverless cars, machine-readable maps, self-driving cars, traffic maps

Mapping Our Shrinking Shores

Coasts have provided the primary cartographical invention to understand the risks that erosion pose to property:  the coast-line is the boundary of the known land, and determines the outer bound of the real estate.  But the coastal fixation of the landlubber privileges the illusion of the fixity of the shore.  More than ever, assumptions about the fixity of shorelines must fall away.  Perhaps the most haunting take away from the Surging Seas web-based map of global shorelines forces us to take into account the inevitable mutability that must be accepted with the rising of ocean-level associated with climate change.

The web-map presents itself as a set of tools of analysis, as much as cartographical techniques, by which the rise of sea-level that has already risen globally some eight inches since 1880 stands to accelerate–emphasizing the alternate scenarios that the acceleration of sea-level rise stands to bring over the next hundred years, introducing a new concept of risk due to coastal flooding.  The availability of accurate GPS images of the elevations of homes have provided the possibility of sketching scenarios of sea-level rise to create readily zoomable maps of elevated ocean levels that confront us with at least the image of the options which we still theoretically have.  The contrasting futures created in this cartographical comparison shocks viewers with a salutary sort of operational paranoia only increased as one fiddles with a slider bar to grant greater specificity to the disastrous local consequences of rising sea-levels world-wide.

shanghai

In ways quite unlike the wonderfully detailed old NOAA Topographic Surveys which map shorelines at regular transects, or T-Sheets, recording the high waterline of tides across 95,000 coastal miles and 3.4 million square miles of open sea, the coastline is less the subject of these web maps than levels of potential inundation.  In a negative-mapping of possibilities of human habitation, blue hues invade the landscape in a monitory metric emphasizing the regions at risk of being underwater in a century.  Whereas scanned T-Sheets can now be viewed by a historical time-bar slider, the fixity of space or time are less relevant to the web maps than the gradients of possible sea-level rise caused by carbon emissions might force us to confront.

Surging Seas forces us to confront the possibilities of the future underwater world.  The infiltration of a deep shade of blue commands the eye by its intensity, deeper shades signifying greater depth, in ways that eerily underscore the deep connection that all land has to the sea that we are apt to turn our backs upon in most land maps, showing the extent to which a changing world will have to familiarize itself to water-level rise in the not-distant future.  It’s almost paradoxical that the national frontiers we have inscribed on maps has until recently effectually made impossible such a global view, but the attraction of imagining the somewhat apocalyptic possibility of sea-level rise seems almost to map a forbidden future we are not usually allowed to see, and has a weirdly pleasurable (if also terrifying) aspect of viewing the extensive consequences of what might be with a stunning level of specific and zoomable local detail we would not otherwise be able to imagine, in what almost seems a fantasia of the possibilities of mapping an otherwise unforeseen loss, not to speak of the apparent lack of coherence of a post-modern world.

For the variety of potential consequences of disastrous scenarios of sea-level rise posed can be readily compared with surprisingly effective and accurate degrees of precision, in maps that illustrate the depths at which specific regions stand to be submerged underwater should sea-level rise continue or accelerate:  zooming into neighborhoods one knows, or cities with which one is familiar, the rapid alteration of two to seven feet in sea-level can be imagined–as can the fates of the some 5 million people worldwide who live less than four feet above sea-level.  For if the shores have long been among the most crowded and popular sites of human habitation–from New York to London to Hong Kong to Mumbai to Jakarta to Venice–the increasing rapidity of polar melting due to climate change stands to produce up to a seven feet rise in sea-level if current rates of carbon emissions, and a mere four degree centigrade rise in global temperature stands to put the homes of over 450 million underwater, which even the most aggressive cutting in carbon emissions might lower to only 130 million, if rates of warming are limited to but 2°C.   (If things continues as they stand, the homes of some 145 million who currently dwell on land in China alone are threatened with inundation.)

The recent review of the disastrous consequences of a rise of two degrees Centigrade on the land-sea boundary of the United States led Climate Central to plot the effects of a-level rise of at least 20 feet on the country–and foreground those regions that were most at risk.   The webmap serves as something like a window into the possible futures of climate change, whose slider allows us to create elevations in sea-level that the ongoing melting of the polar ice-cap seems poised to create.  As much as offer compare and contrast catastrophes, the immediacy of recognizing the degree to which places of particular familiarity may soon stand to lie underwater performs a neat trick: for whereas a map might be said to bring closer the regions from which one is spatially removed or stands apart, making present the far-off by allowing one to navigate its spatial disposition in systematic fashion, the opacity of those light blue layers of rising seas obscures and subtracts potentially once-familiar site of settlement, effectively removing land from one’s ken as it is subtracted from the content of the map, and charting land losses as much as allowing its observation.

The result is dependably eery.  The encroachment of the oceans consequent to rising sea-level propose a future worthy of disaster films.  But the risks can be viewed in a more measured ways in the maps of sea-level on the shores of the United States calculated and mapped by Stamen design in the Surging Seas project that allows us to imagine different scenarios of sea-level rise on actual neighborhoods–the set of interactive maps, now aptly retitled Mapping Choices, will not only cause us to rethink different scenarios of shifting shorelines by revisiting our favorite low-lying regions, or allow us to create our own videos of Google Earth Flyovers of different areas of the world.  Mapping Choices provides a way to view the risks and vulnerabilities to climate change made particularly graphic in centers of population particularly low-lying, where they testify to the clarity with which web maps can create a vision of imagined experience as we imagine the actual losses that global warming is poised to create.  And although the recent expansion of the map to a global research report, allowing us to examine possible global futures that are otherwise difficult to comprehend or process the potential risks posed by the inundation of low-lying inhabited regions for a stretch of thirty meters, the potential risk of inundation is perhaps most metaphorically powerful for that region that one best knows, where the efficacy of a simple side-by-side juxtaposition of alternate potential realities has the unexpected effect of hitting one in one’s gut:  for debates about the possibilities of climate change suddenly gain a specificity that command a level of attention one can only wonder why one never before confronted as an actual reality.

Alternate Scenarios

Maps are rarely seen as surrogates for observation, and web maps often offer something like a set of directions, or way finding tools.  But the predicted scenarios of sea-levle rise allows one to grasp the local levels of inundation with a specificity that allow risk to be seen in terms of actual buildings–block by block–and wrestle with the risks that climate change portends.  The lack of defenses of populations in many regions are definitely also at great risk, but to envision the loss of property and known space seems oddly more affecting in such an iconic map of Manhattan–and somewhat more poetic as an illustration of the fungibility of its hypertrophied real estate and property values.

Of course, the data of Climate Change allows a terrifying view of the future of four degrees centigrade warming on low-lying Boston and the shores of the Charles, as the city is reduced to a rump of an archipelago–

Boston

or the disastrous scenarios for the populations in the lower lying areas of Jakarta–

Jakarta

or, indeed, in Mumbai–

Mumbai

Viewers are encouraged to imagine the risks of the possible alternate futures of just two degrees with an immediacy that worms into one’s mind.  The possibilities that GPS offers of instantaneous calculations of shoreline position and elevations allow one to view a potential reality where one can focus on individual streets with inspirational urgency.

But such scenarios seem somehow particularly graphic illustrations of risk for those regions where there has been a huge investment of human capital, as New York City, where it might seem credible enough to be mapped that they are poised to melt not into air but vanish beneath ocean waves.  For if Marx predicted with spirited apocalypticism at the very start of the Communist Manifesto that capitalism would destroy value to money as it expanded into future markets, as market forces abstracted all things into money–and “all that is solid melts into air”–the twentieth-century expansion of possibilities of environmental and human destruction have lent unprecedented urgency.  While for Marx the metaphor of melting of inherent value was the product of the capitalist system, the capitalist system bodes a strikingly similar image of sinking into the seas.  For huge expanses of the old industrial city–the piers and the old manufacturing zones, most all of the Jersey shore and area around Newark, Long Island City and the Gowanus canal seem sink apart from the shoreline in the future New York that Surging Seas creates, in ways that seem the consequence of industrial production and carbon surging far beyond 400 parts per million (ppm), with the addition of some 2 ppm per year, in ways that make it a challenge to return to the levels deemed healthy–let alone the levels of 275 ppm which the planet long held through the mid-eighteenth century.

That drought, hurricanes, disappearance of arctic ice (up to 80% in summertime) and rising sea levels are tied to the growth of greenhouse gasses hint how global capital might be closely linked to the sinking into the seas, and suggest the surpassing of a tipping point of climate change that is the counterpart to melting into air might be viewed, in New York City’s economic geography, as if to offer a poetic reflection of the migration of capital into the financial centers of the city downtown from its piers or areas of industry–

NY:NJ

–although half-hearted joking references to Marxist maxims (or geographers) is hardly the topic of this post, and the island of high finance that would be created in downtown Manhattan would hardly have ever been planned as an island.

Lower Manhattan Island?

What one might someday see as the lopping off of much of lower Manhattan might be far better tied to the runaway markets of a free-trade economy, rather than rational planning, and has no clear correspondence to property values.

lopped off lower Manhattan

Indeed, the mapping of the prospective loss of those residential parts of the city “where poor people dwell” (as do minorities) is undeniable, if one looks at the 2010 American Community Survey, regarding either in the city’s distribution of ethnic groups or households earning below $30,000, who remain the most vulnerable to the danger of rising ocean levels.

ACS 2005?

Income under 30,000American Community Survey (2010)/New York Times

But the disappearance of the Eastern Parkway and the Jersey shore are a blunt reminder of the extreme vulnerability of the built environment that lies close to sea-level–

Eastern Parkway and Atlantic Avenue above the seas

–and an actually not-too-apocalyptic reminder, but the mapping of consequences of man-made change that goes under the rubric of anthropocene, and is most apparent in the increasing quotient of carbon dioxide in the atmosphere and the warming that this may bring.  For if it has been approximated that there has already been a rise of sea-levels by some eight inches since 1880, the unprecedented acceleration of that rate, which will increase the dangers of floods from storms and place many of the some three thousand coastal towns at risk, are likely to increase as the sea level may rise from two to over seven feet during the new century.

350ppm-chart-300_fixed

The distribution is by no means uniform, and more industrialized countries, like the United States, are producing far more particulate matter, although they have been recently overtaken by China from 2007, and have atmospheres above 380 ppm in the Spring, making them more responsible for rendering higher temperatures–although the lower-lying lands below the equator may be most vulnerable to the consequences of climate change.

Screen Shot 2015-07-13 at 8.20.11 PM

Screen Shot 2015-07-13 at 8.21.44 PMScreen Shot 2015-07-13 at 8.22.35 PMVox– A visual tour of the world’s CO2 emissions

The increasing levels of particulate matter are attempted to be more locally mapped in Surging Seas.

The changes extend, in a nice dramatic detail, into the Central Park Meer rejoining the East River with the predicted inundation of much of the posh residential area of Manhattan’s East Side, all the way to Fifth Avenue.

Truncated NJ and absent upper East side

It is difficult not to compare the scenarios sketched in Surging Seas maps to some of the maps of those future islands of New York that Map Box and others allowed Sarah Levine to create maps of the heights of buildings from open data after the pioneering maps of Bill Rankin’s 2006 “Building Heights.”   When Rankin remapped Manhattan by taking building height as an indirect index of land value, he saw the island as clustered in distinct islands of elevation above 600 feet:

manhattan-heights

Radical Cartography (2006)

Levine used similar data to chart the fruits of Mammon in buildings above sixty stories.  Maps of skyscrapers beside the gloom of Surging Seas suggest those towers able to withstand the rising seas brought by global temperatures jumping by just two degrees Centigrade.  If one moves from the map of the bulk of lowest sections of lower Manhattan–

Two Inches in Lower Manhattan

with reference to Levine’s brilliantly colored carmine mapping of the highest buildings in the Big Apple, above forty-seven or fifty-nine stories, which one imagines might provide the best vantage points that rise above the rising waves, especially when located on the island’s shores.

Mapping NYC by Sarah

Sarah Levine Maps Manhattan

There’s a mashup begging to be made, in which the tallest buildings of over fifty stories at the tip of the island peak up above the cresting waves, and the rump of buildings in lower Manhattan offer contrasting vistas of the city’s contracting shores.  The buildings that create the canyons of urban life, the buildings of elevation surpassing sixty stories might suggest the true islands of Manhattan’s future, as much as the points that punctuate its skyline.

Sarah's Lower Manhattan

The realization of this possible apocalypse of property made present in these maps offer the ability to visit impending disasters that await our shorelines and coasts, and imagine the consuming of property long considered the most valuable on the shore–as rising seas threaten to render a whispy shoreline of the past, lying under some six meters of rising seas.  The prospect of this curtailing of the ecumene, if it would bring an expansion of our nation’s estuaries, presents an image of the shrinking of the shores that suggests, with the authority of a map, just how far underwater we soon stand to be.

Eastern USASurging Seas: sea level rise after 2 degrees centigrade warming

All actual maps, including Levine’s, provide authoritative reporting of accurate measures with a promise of minimal distortions.  But visualizations such Surging Seas offer frightening windows into a future not yet arrived, using spatial modeling to predict the effects of a rise in sea-level of just five feet, and the potentially disastrous scale such a limited sea-level change would bring:  the coasts are accurate, but their inundation is a conservative guess, on the lower spectrum of possibilities.  For in a country in which 2.6 million homes are less than four feet above current sea-levels, the spectral outlines of chilly blue former coastlines peak at a future world are still terrifying and seem all too possible, as much as potential cautionary tale.  The concretization of likely scenarios of climate change remind us that however much we really don’t want to get there, how potentially destructive the possibility of a several degree rise in ocean temperatures would be.

Leave a comment

Filed under Climate Change, coastal flooding, data visualization, Global Warming